|
Assessment of myocardial infarction in mice by Late Gadolinium Enhancement MR imaging using an inversion recovery pulse sequence at 9.4TAbstract: MRI was performed at 9.4T in mice, two days after induction of myocardial infarction (n = 4). For cardiovascular MR imaging, a segmented magnetization-prepared fast low angle shot (MP-FLASH) sequence was used with varied TIs ranging from 40 to 420 ms following administration of gadolinium-DTPA at 0.6 mmol/kg. Contrast-to-noise (CNR) and signal-to-noise ratio (SNR) were measured and compared for each myocardial region of interest (ROI).The optimal TI, which corresponded to a minimum SNR in the normal myocardium, was 268 ms ± 27.3. The SNR in the viable myocardium was significantly different from that found in the infarcted myocardium (17.2 ± 2.4 vs 82.1 ± 10.8; p = 0.006) leading to a maximal relative SI (Signal Intensity) between those two areas (344.9 ± 60.4).Despite the rapid heart rate in mice, our study demonstrates that LGE MRI can be performed at 9.4T using a protocol similar to the one used for clinical MR diagnosis of myocardial infarction.Late Gadolinium Enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging using a T1-weighted sequence with an inversion recovery (IR) pre-pulse is commonly used for the clinical diagnosis of myocardial infarction in humans [1,2], and experimentally in large animals [3]. The time to inversion (TI) is selected to null the signal intensity (SI) in the non-infarcted (viable) myocardium, following administration of chelated gadolinium, in order to increase contrast between the viable and hyper-enhanced infarcted myocardium [1]. Late gadolinium enhancement MR imaging with inversion recovery techniques has been shown to correlate well as an early marker of irreversible injury and eventual fibrosis [3].More recently, the mouse model has been used increasingly for investigating the mechanisms of myocardial diseases. Hence, its essential to assess myocardial infarction in pre-clinical models in a manner similar to that used for clinical diagnosis. At present the assessment of infarct size in small animals at high magnetic f
|