全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Aprendizaje de selección de acciones en un mundo simple pero impredecible

Keywords: Aprendizaje por refuerzo , Aprendizaje Q , Agentes autónomos , Animats

Full-Text   Cite this paper   Add to My Lib

Abstract:

Uno de los principales problemas estudiados en la simulación de agentes artificiales autónomos es el de la selección de acciones: un mecanismo que le permita al sistema escoger la acción más apropiada para la situación en que se encuentre, de tal forma que maximice su medida de éxito. El aprendizaje por refuerzo representa un enfoque atractivo para atacar este problema, ya que se basa en la búsqueda de se ales de premio y la evasión de se ales de castigo mediante un proceso de ensayo y error. En este artículo presentamos al PAISA 1, una criatura artificial que aprende a comportarse (seleccionar acciones) utilizando una técnica de aprendizaje por refuerzo (aprendizaje Q) para optimizar la cantidad de comida que puede encontrar en un mundo impredecible, aunque con un espacio estado-acción peque o. One of the main problems studied in simulation of artificial autonomous agents is the action-selection: a mechanism that allows the system to choice the more suitable action for the specific situation where it is located, in such a way that maximises his success measure. The reinforcement learning represents an attractive approach to attack this problem, cause it is based in the searching of awards signals and the refusing of punishments by a trial and error process. In this paper we present the PAISA 1, an artificial creature that learns to behave (that is, action-selection) using a reinforcement learning technique known as Q-learning, to optimise the amount of food that he can find in an unpredictable world, although in a small state-action space.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133