|
BMC Neuroscience 2008
Amphetamine and pseudoephedrine cross-tolerance measured by c-Fos protein expression in brains of chronically treated ratsAbstract: This study examined the effect of chronic administration of pseudoephedrine in rat nucleus accumbens and striatum and identified three further similarities to amphetamine. (i) Chronic exposure to pseudoephedrine reduced the c-Fos response to acute pseudoephedrine treatment suggesting that pseudoephedrine induced tolerance in the animals. (ii) In animals chronically treated with amphetamine or pseudoephedrine the acute c-Fos response to pseudoephedrine and amphetamine was reduced respectively as compared to na?ve animals indicating cross-tolerance for the two drugs. (iii)The known involvement of the dopamine system in the response to amphetamine and pseudoephedrine was further confirmed in this study by demonstrating that pseudoephedrine similarly to amphetamine, but with lower potency, inhibited [3H]dopamine uptake in synaptosomal preparations.This work has demonstrated further similarities of the effect of pseudoephedrine to those of amphetamine in brain areas known to be associated with drug addiction. The most significant result presented here is the cross tolerance effect of amphetamine and psudoephedrine. This suggests that both drugs induce similar mechanisms of action in the brain. Further studies are required to establish whether despite its considerable lower potency, pseudoephedrine could pose health and addiction risks in humans similar to that of known psychostimulants.Pseudoephedrine is a drug commonly prescribed as a nasal decongestant and bronchodilator and is also available in over the counter cold remedy medications. The chemical structure of pseudoephedrine is similar to that of the psychostimulant amphetamine and both are classified as sympathomimetic drugs [1]. Numerous studies have documented the cellular effects of amphetamine which include increased dopamine release, inhibition of dopamine uptake, D1 and D2 dopamine receptor stimulation, cAMP changes, cAMP responsive element binding protein (CREB) activation, immediate-early gene expression an
|