|
BMC Neuroscience 2008
The role of the t-SNARE SNAP-25 in action potential-dependent calcium signaling and expression in GABAergic and glutamatergic neuronsAbstract: We found that neurons cultured from Snap25 homozygous null mutant (Snap25-/-) mice failed to develop synchronous network activity seen as spontaneous AP-dependent calcium oscillations and were unable to trigger glial transients following depolarization. Voltage-gated calcium channel (VGCC) mediated calcium transients evoked by depolarization, nevertheless, did not differ between soma of SNAP-25 deficient and control neurons. Furthermore, we observed that although the expression of SNAP-25 RNA transcripts varied among neuronal populations in adult brain, the relative ratio of the transcripts encoding alternatively spliced SNAP-25 variant isoforms was not different in GABAergic and glutamatergic neurons.We propose that the SNAP-25b isoform is predominantly expressed by both mature glutamatergic and GABAergic neurons and serves as a fundamental component of SNARE complex used for fast synaptic communication in excitatory and inhibitory circuits required for brain function. Moreover, SNAP-25 is required for neurons to establish AP-evoked synchronous network activity, as measured by calcium transients, whereas the loss of this t-SNARE does not affect voltage-dependent calcium entry.Regulated neurotransmission at chemical synapses underlies neural communication and is likely to contribute to complex brain functions, such as synaptic plasticity and memory storage. Neurotransmitter release requires fusion of synaptic vesicles that is mediated by the neuronal SNARE complex at release sites of presynaptic terminals [for review, see ref. [1,2]]. This core heteromeric protein assembly, comprised of the t-SNAREs syntaxin 1, and SNAP-25 situated at the target or plasma membrane and the v-SNARE VAMP-2/synaptobrevin on secreting vesicles, is responsible for membrane fusion that underlies the Ca2+-triggered neuroexocytosis that is required for AP-dependent neurotransmission signaling point-to-point communication between neurons, as well as the regulated secretion from neuroendocrine
|