|
Chromosomal duplications and cointegrates generated by the bacteriophage lamdba Red system in Escherichia coli K-12Abstract: A number of observations concerning recombination events between the chromosome and linear DNAs were made: (1) Formation of Lac+ and Lac- recombinants depended upon the same recombination functions. (2) High multiplicity and high chromosome copy number favored Lac+ recombinant formation. (3) The Lac+ recombinants were unstable, segregating Lac- progeny. (4) A tetracycline-resistance marker in a site of the phage chromosome distant from cat was not frequently co-inherited with cat. (5) Recombination between phage sequences in the linear DNA and cryptic prophages in the chromosome was responsible for most of the observed Lac+ recombinants. In addition, observations were made concerning recombination events between the chromosome and circular DNAs: (6) Formation of recombinants depended upon both RecA and, to a lesser extent, Red. (7) The linked tetracycline-resistance marker was frequently co-inherited in this case.The Lac+ recombinants arise from events in which homologous recombination between the incoming linear DNA and both lac and cryptic prophage sequences in the chromosome generates a partial duplication of the bacterial chromosome. When the incoming DNA species is circular rather than linear, cointegrates are the most frequent type of recombinant.The Red recombination system of bacteriophage λ promotes efficient double strand break repair/recombination. An Escherichia coli strain in which RecBCD has been genetically replaced by Red exhibits greatly elevated levels of recombination between its chromosome and short linear double-stranded DNA species sharing sequences with the chromosome [1].In previous studies, we have characterized a recombination event, pictured in Figure 1A, in which a 3.5 kbp dsDNA consisting of the cat gene and flanking lac operon sequences recombines with the E. coli chromosome to generate a chloramphenicol-resistant Lac- recombinant [2-4]. The dsDNA was delivered into the cell as part of the chromosome of a non-replicating λ vector, from
|