|
Association of ATRX with pericentric heterochromatin and the Y chromosome of neonatal mouse spermatogoniaAbstract: Our results demonstrate that histone H3 tri-methylated at lysine 9 (H3K9me3), a hallmark of constitutive heterochromatin, as well as the chromatin remodeling protein ATRX remained associated with pericentric heterochromatin regions in spite of their extensive hypo-methylation. This suggests that in neonatal spermatogonia, chromosomal 5-methyl cytosine patterns are regulated independently of changes in histone methylation, potentially reflecting a crucial mechanism to maintain pericentric heterochromatin silencing. Furthermore, chromatin immunoprecipitation and fluorescence in situ hybridization, revealed that ATRX as well as H3K9me3 associate with Y chromosome-specific DNA sequences and decorate both arms of the Y chromosome, suggesting a possible role in heterochromatinization and the predominant transcriptional quiescence of this chromosome during spermatogenesis.These results are consistent with a role for histone modifications and chromatin remodeling proteins such as ATRX in maintaining transcriptional repression at constitutive heterochromatin domains in the absence of 5-methyl cytosine and provide evidence suggesting that the establishment and/or maintenance of repressive histone and chromatin modifications at pericentric heterochromatin following genome-wide epigenetic reprogramming in the germ line may precede the establishment of chromosomal 5-methyl cytosine patterns as a genomic silencing strategy in neonatal spermatogonia.In the mammalian germ line, parental-specific genomic imprints are erased during each generation in order to allow for their subsequent re-establishment during gametogenesis [1]. This process of epigenetic reprogramming is initiated during mouse embryonic development at around day 10.5 post coitum (p.c.), a time when primordial germ cells migrate to the genital ridge [2-4]. Re-establishment of sex-specific epigenetic modifications in the male germ line begins on days 13–17 p.c. and continues during the first days of postnatal developme
|