全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana

DOI: 10.1186/1471-2180-10-260

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga maritima (TmaSSB) and Thermotoga neapolitana (TneSSB). They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively). They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold) in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC) the melting temperature (Tm) was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively.The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR).Single-stranded DNA-binding (SSB) proteins play an essential role in all in vivo processes involving ssDNA. They interact with ssDNA and RNA, in an independent from sequence manner, preventing single-stranded nucleic acids from hybridization and degradation by nucleases [1]. SSB proteins play a central role in DNA replication, repair and recombination [2-4]. They have been identified in all classes of organisms, performing similar functions but displaying little sequence similarity and very different ssDNA binding properties. Based on their oligomeric state, SSBs can be classified into four gr

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133