|
BMC Genomics 2009
Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistanceAbstract: The peptides induced the VraSR cell-wall regulon and several other genes that are also up-regulated in cells treated with vancomycin and other cell wall-active antibiotics. In addition to this similarity, three genes/operons were particularly strongly induced by the peptides: vraDE, SA0205 and SAS016, encoding an ABC transporter, a putative membrane-bound lysostaphin-like peptidase and a small functionally unknown protein, respectively. Ovispirin-1 and dermaseptin K4-S4(1-16), which disrupt lipid bilayers by the carpet mechanism, appeared to be strong inducers of the vraDE operon. We show that high level induction by ovispirin-1 is dependent on the amide modification of the peptide C-terminus. This suggests that the amide group has a crucial role in the activation of the Aps (GraRS) sensory system, the regulator of vraDE. In contrast, temporin L, which disrupts lipid bilayers by forming pores, revealed a weaker inducer of vraDE despite the C-terminal amide modification. Sensitivity testing with CAMPs and other antimicrobials suggested that VraDE is a transporter dedicated to resist bacitracin. We also showed that SA0205 belongs to the VraSR regulon. Furthermore, VraSR was shown to be important for resistance against a wide range of cell wall-active antibiotics and other antimicrobial agents including the amide-modified ovispirin-1, bacitracin, teicoplanin, cefotaxime and 10 other β-lactam antibiotics, chlorpromazine, thioridazine and EGTA.Defense against different CAMPs involves not only general signaling pathways but also CAMP-specific ones. These results suggest that CAMPs or a mixture of CAMPs could constitute a potential additive to standard antibiotic treatment.The ubiquitous presence of cationic antimicrobial peptides (CAMPs) in virtually all types of cells and organisms ranging from bacterial cells to humans suggests that CAMPs have important conserved roles as defense weapons. CAMPs contribute to the host defense of microbial invasion on epithelial surfaces
|