|
BMC Genomics 2009
Development and mapping of DArT markers within the Festuca - Lolium complexAbstract: The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used), we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins.The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca × Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions.Grasses are among the most important and widely cultivated plants on Earth, with a total area of grassland estimated to be twice that of cropland. In Europe, fifty percent of the farmed landscape is under grasses which accounts for a large proportion of the annual production of beef and milk with a total value of more than € 70 billion [1]. They are also used extensively for turf and amenity purposes, and play an important role in soil conservation and protection of environmental resources. Among the cultivated grasses, ryegrasses (Lolium spp.) and fescues (Festuca spp.) predominate, especially in temperate climates [2].Fescues and ryegrasses are closely related and belong to the Poaceae. Whereas Lolium consists of only eight diploid species, Festuca comprises nearly 500 species with ploidy levels ranging from diploid to dodecaploid. The two agronomically exploited fescues - F. pratensis and F. arundinacea - belong to the Bovinae section, subgenus Schedonorus [3,4], but the systematics of
|