|
BMC Genomics 2009
The l1-l2 regularization framework unmasks the hypoxia signature hidden in the transcriptome of a set of heterogeneous neuroblastoma cell linesAbstract: We determined the gene expression profile of 9 neuroblastoma cell lines cultured under normoxic and hypoxic conditions. We studied a heterogeneous set of neuroblastoma cell lines to mimic the in vivo situation and to test the robustness and validity of the l1-l2 regularization with double optimization. Analysis by hierarchical, spectral, and k-means clustering or supervised approach based on t-test analysis divided the cell lines on the bases of genetic differences. However, the disturbance of this strong transcriptional response completely masked the detection of the more subtle response to hypoxia. Different results were obtained when we applied the l1-l2 regularization framework. The algorithm distinguished the normoxic and hypoxic statuses defining signatures comprising 3 to 38 probesets, with a leave-one-out error of 17%. A consensus hypoxia signature was established setting the frequency score at 50% and the correlation parameter ε equal to 100. This signature is composed by 11 probesets representing 8 well characterized genes known to be modulated by hypoxia.We demonstrate that l1-l2 regularization outperforms more conventional approaches allowing the identification and definition of a gene expression signature under complex experimental conditions. The l1-l2 regularization and the cross validation generates an unbiased and objective output with a low classification error. We feel that the application of this algorithm to tumor biology will be instrumental to analyze gene expression signatures hidden in the transcriptome that, like hypoxia, may be major determinant of the course of the disease.Clues to the prognosis of cancer are reflected at the time of surgical removal in the pattern of gene expression in the primary tumor. The ultimate goal is to identify specific "gene expression signatures" that define subsets of tumors and that will ultimately allow to predict the clinical course. Unsupervised analysis of the gene expression pattern has led to the defin
|