全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
BMC Genomics  2009 

A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat

DOI: 10.1186/1471-2164-10-496

Full-Text   Cite this paper   Add to My Lib

Abstract:

A total of 67,151 Brachypodium BAC clones were fingerprinted with the SNaPshot HICF fingerprinting method and a genome-wide physical map of the Brachypodium genome was constructed. The map consisted of 671 contigs and 2,161 clones remained as singletons. The contigs and singletons spanned 414 Mb. A total of 13,970 gene-related sequences were detected in the BAC end sequences (BES). These gene tags aligned 345 contigs with 336 Mb of rice genome sequence, showing that Brachypodium and rice genomes are generally highly colinear. Divergent regions were mainly in the rice centromeric regions. A dot-plot of Brachypodium contigs against the rice genome sequences revealed remnants of the whole-genome duplication caused by paleotetraploidy, which were previously found in rice and sorghum. Brachypodium contigs were anchored to the wheat deletion bin maps with the BES gene-tags, opening the door to Brachypodium-Triticeae comparative genomics.The construction of the Brachypodium physical map, and its comparison with the rice genome sequence demonstrated the utility of the SNaPshot-HICF method in the construction of BAC-based physical maps. The map represents an important genomic resource for the completion of Brachypodium genome sequence and grass comparative genomics. A draft of the physical map and its comparisons with rice and wheat are available at http://phymap.ucdavis.edu/brachypodium/ webcite.Model systems play an important role in studies of genome structure and evolution, and are invaluable in gene isolation and functional characterization. The application of model systems toward the study of both basic and applied problems in plant biology has become routine. The model dicot Arabidopsis thaliana has been used in studies ranging from nutrient uptake and metabolism to plant-pathogen interactions. Unfortunately, due to its distant relationship to monocots, Arabidopsis is not an ideal model for grasses. Rice is being currently used as a grass model [1], but its primary ad

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133