全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
BMC Genomics  2009 

Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions

DOI: 10.1186/1471-2164-10-507

Full-Text   Cite this paper   Add to My Lib

Abstract:

EGC induced significant changes in gene expression profiling of proliferating IEC after 24 hours of co-culture. 116 genes were identified as differentially expressed (70 up-regulated and 46 down-regulated) in IEC cultured with EGC compared to IEC cultured alone. By performing functional analysis of the 116 identified genes using Ingenuity Pathway Analysis, we showed that EGC induced a significant regulation of genes favoring both cell-to-cell and cell-to-matrix adhesion as well as cell differentiation. Consistently, functional studies showed that EGC induced a significant increase in cell adhesion. EGC also regulated genes involved in cell motility towards an enhancement of cell motility. In addition, EGC profoundly modulated expression of genes involved in cell proliferation and cell survival, although no clear functional trend could be identified. Finally, important genes involved in lipid and protein metabolism of epithelial cells were shown to be differentially regulated by EGC.This study reinforces the emerging concept that EGC have major protective effects upon the IEB. EGC have a profound impact upon IEC transcriptome and induce a shift in IEC phenotype towards increased cell adhesion and cell differentiation. This concept needs to be further validated under both physiological and pathophysiological conditions.The intestinal epithelial barrier (IEB) is the first boundary between the organism and the luminal environment. It plays a dual role by allowing the passage of nutrients and electrolytes but preventing the passage of pathogens. The maintenance of its homeostasis is of utmost importance for the survival of the organism. The IEB is formed by a monolayer of specialized intestinal epithelial cells (IEC) under constant renewal and maintained together via various cell-to-cell and cell-to-matrix interactions. The IEB is part of a complex network of specialized cell types constituting its microenvironment such as immune cells, subepithelial fibroblasts, endothe

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133