|
BMC Cancer 2006
Cell cycle regulation by the Wee1 Inhibitor PD0166285, Pyrido [2,3-d] pyimidine, in the B16 mouse melanoma cell lineAbstract: Tumor cell proliferation was determined by counting cell numbers. Cell cycle distribution was determined by flow cytometry. Morphogenesis analysis such as microtubule stabilization, Wee1 distribution, and cyclin B location were observed by immunofluorescence confocal microscopy. An immunoblot analysis of cdc2-Tyr15, cyclin D, E, p16, 21, 27, and Rb. A real-time PCR of the mRNA of cyclin D were completed.In our experiment, B16 cells also dramatically abrogated the G2 checkpoint and were found to arrest in the early G1 phase by treatment with 0.5 μM for 4 hours observed by flow cytometry. Cyclin D mRNA decreased within 4 hours observed by Real-time PCR. Rb was dephosphrylated for 24 hours. However, B16 cells did not undergo cell death after 0.5 μM treatment for 24 hours. Immnofluoscence microscopy showed that the cells become round and small in the morphogenesis. More interesting phenomena were that microtubule stabilization was blocked, and Wee1 distribution was restricted after treatment for 4 hours.We analyzed the effect of Wee1 inhibitor PD0166285 described first by Wang in the G2 transition in the B16 melanoma cell line. The inhibitor PD0166285 abrogated G2/M checkpoint inducing early cell division. Moreover, we found that the treatment of cells with the inhibitor is related to microtubule stabilization and decrease in cyclin D transcription. These effects together suggest that Wee1 inhibitor may thus be a potentially useful anti-cancer therapy.The progression of the mammalian cell cycle is controlled by the sequential activation of a series of cell cycle-dependent kinases (CDKs) [1]. Dysfunction of these molecular checkpoints results in the proliferation of cancer cells. In this context, an abrupt shift of the cell to mitosis from the G2 phase has received increasing attention, as have elements of the G2 checkpoint, particularly Wee1 [2].The activation of the mitosis-promoting kinase cdc2 is required for transition from the G2 to the G1 phase in all eukaryotic c
|