|
PMC42, a breast progenitor cancer cell line, has normal-like mRNA and microRNA transcriptomesDOI: 10.1186/bcr2109 Abstract: The mRNA and miRNA expression profiles of several breast cell lines of cancerous or normal origin were measured using printed slide arrays, Luminex bead arrays, and real-time reverse transcription-polymerase chain reaction.We demonstrate that the mRNA expression profiles of two breast cell lines are similar to that of normal breast tissue: HB4a, immortalised normal breast epithelium, and PMC42, a breast cancer cell line that retains progenitor pluripotency allowing in-culture differentiation to both secretory and myoepithelial fates. In contrast, only PMC42 exhibits a normal-like miRNA expression profile. We identified a group of miRNAs that are highly expressed in normal breast tissue and PMC42 but are lost in all other cancerous and normal-origin breast cell lines and observed a similar loss in immortalised lymphoblastoid cell lines compared with healthy uncultured B cells. Moreover, like tumour suppressor genes, these miRNAs are lost in a variety of tumours. We show that the mechanism leading to the loss of these miRNAs in breast cancer cell lines has genomic, transcriptional, and post-transcriptional components.We propose that, despite its neoplastic origin, PMC42 is an excellent molecular model for normal breast epithelium, providing a unique tool to study breast differentiation and the function of key miRNAs that are typically lost in cancer.Despite its many shortcomings, continuous cell culture remains the most common model system for investigating molecular mechanisms of normal differentiation, disease, and neoplastic transformation (reviewed in [1]). This is thanks mostly to ease of use, homogeneity, availability in large quantities, and sustainability over prolonged periods of cell culture. Cell lines typically are established either from tumours (primary or metastatic) or from immortalised normal cells often used as experimental models of healthy tissue. However, the normal physiology of many cell types depends on their native neighbouring cell types and
|