|
Circulating β-endorphin, adrenocorticotrophic hormone and cortisol levels of stallions before and after short road transport: stress effect of different distancesAbstract: Forty-two healthy Thoroughbred and crossbred stallions were studied before and after road transport over distances of 100, 200 and 300 km. Blood samples were collected from the jugular vein: first in a single box immediately before loading (pre-samples), then immediately after transport and unloading on arrival at the breeding stations (post-samples).An increase in circulating β-endorphin levels after transport of 100 km (P < 0.01), compared to basal values was observed. Circulating ACTH levels showed significant increases after transport of 100 km (P < 0.001) and 200 km (P < 0.001). Circulating cortisol levels showed significant increases after road transport over distances of 100, 200 and 300 km (P < 0.001). An effect of transport on β-endorphin, ACTH and cortisol variations was therefore evident for the different distances studied. No significant differences (P > 0.05) between horses of different ages and different breeds were observed for β-endorphin, ACTH and cortisol levels.The results obtained for short term transportation of stallions showed a very strong reaction of the adrenocortical system. The lack of response of β-endorphin after transport of 200–300 km and of ACTH after transport of 300 km seems to suggest a soothing effect of negative feedback of ACTH and cortisol levels.Competitions, breeding, leisure activities, sale or slaughter are the most usual reasons for transporting horses. The necessity of transporting live animals has increased the need to better evaluate horse welfare and health, and thus to verify the effects of transport stress on the variables related to physiological adaptations. Studies to determine the amount of stress experienced by horses during transport have yielded widely varying results. Results are difficult to interpret because transportation involves a range of potential stressors, such as loading, unloading, confinement, vibration, changes in temperature and humidity, inadequate ventilation, space allowed [1] and, frequentl
|