A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.
References
[1]
Devezas, TC; Linstone, AH; Humberto, T; Santos, JS. The growth dynamics of the internet and the long wave theory. Technol. Forecast. Soc. Change 2005, 72, 913–935, doi:10.1016/j.techfore.2005.06.001.
[2]
Hasegawa, H. Formation of III–V low dimensional structures and their applications to intelligent quantum chips. Microelectron. J 2003, 34, 341–345, doi:10.1016/S0026-2692(03)00022-3.
[3]
Mustafa, F; Parimon, N; Hashim, AM; Rahman, SFA; Rahman, ARA; Osman, MN. Design, fabrication and characterization of a Schottky diode on an AlGaAs/GaAs HEMT structure for on-chip RF power detection. Superlattices Microstruct 2010, 47, 274–287, doi:10.1016/j.spmi.2009.10.011.
[4]
Mustafa, F; Parimon, N; Hashim, AM; Rahman, SFA; Rahman, ARA; Osman, MN. RF-DC power conversion of Schottky diode fabricated on AlGaAs/GaAs heterostructure for on-chip rectenna device application in nanosystems. Microsyst. Technol 2010, 16, 1713–1717, doi:10.1007/s00542-010-1099-4.
[5]
Abrams, M. Dawn of the E-bomb. IEEE Spectrum 2003, 40, 24–30.
[6]
Sharma, BL. Metal-Semiconductor Schottky Barrier Junctions and Their Applications; Plenum Press: New York. NY, USA, 1984.
[7]
Luy, JF; Strohm, KM; Buechier, J; Russer, P. Silicon Monolithic Millimeter-Wave Integrated Circuits. Proceedings of the IEEE MTTS Workshop on Silicon RF Technologies, Orlando, FL, USA, 16–20 May 1995; 139, pp. 209–216.
[8]
Milanovic, V; Gaitan, M; Marshall, JC; Zaghloul, ME. CMOS foundry implementation of Schottky diodes for RF detection. IEEE Trans. Electron Devices 1996, 43, 2210–2214, doi:10.1109/16.544393.
[9]
Jeon, W; Firestone, TM; Rodgers, JC; Melngailis, J. Design and fabrication of Schottky diode on-chip RF power detector. Solid-State Electron 2004, 48, 2089–2093, doi:10.1016/j.sse.2004.05.066.
[10]
Suh, YH; Chang, K. A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans. Microwave Theory Tech 2002, 50, 1784–1789, doi:10.1109/TMTT.2002.800430.
[11]
Mimura, T; Hiyamizu, S; Fujii, T; Nanbu, K. A new field-effect transistor with selectively doped GaAs/n- AlGaAs heterojunctions. Jpn. J. Appl. Phys 1980, 19, L225–L227, doi:10.1143/JJAP.19.L225.
[12]
Shur, MS; Peatman, WC; Park, H; Grimm, W; Hurt, M. Novel heterodimensional diodes and transistors. Solid-State Electron 1995, 38, 1727–1730, doi:10.1016/0038-1101(95)00038-U.
[13]
Hashim, AM; Hashizume, T; Iizuka, K; Hasegawa, H. Plasma wave interactions in the microwave to THz range between carriers in a semiconductor 2DEG and interdigital slow waves. Superlattices Microstruct 2003, 34, 531–537, doi:10.1016/j.spmi.2004.03.054.
[14]
Mustafa, F; Hashim, AM. Generalized 3D tranverse magnetic mode method for analysis of interaction between drifting plasma waves in 2DEG-structured semiconductors and electromagnetic space harmonic waves. Prog. Electromagn. Res 2010, 102, 315–335, doi:10.2528/PIER10012612.
[15]
Mustafa, F; Hashim, AM. Properties of electromagnetic fields and effective permittivity excited by drifting plasma waves in semiconductor-insulator interface structure and equivalent transmission line technique for multi-layered structure. Prog. Electromagn. Res 2010, 104, 403–425, doi:10.2528/PIER10041504.
[16]
Iizuka, K; Hashim, AM; Hasegawa, H. Surface plasma wave interactions between semiconductor and electromagnetic space harmonics from microwave to THz range. Thin Solid Films 2003, 464–465, 464–468.
[17]
Hashim, AM; Kasai, S; Hashizume, T; Hasegawa, H. Large modulation of conductance in interdigital-gated HEMT devices due to surface plasma wave interactions. Jpn. J. Appl. Phys 2005, 44, 2729–2734, doi:10.1143/JJAP.44.2729.
[18]
Hashim, AM; Kasai, S; Hashizume, T; Hasegawa, H. Integration of interdigital-gated plasma wave device for proximity communication system application. Microelectron. J 2007, 38, 1263–1267, doi:10.1016/j.mejo.2007.09.028.
[19]
Hashim, AM; Kasai, S; Iizuka, K; Hashizume, T; Hasegawa, H. Novel structure of GaAs-based interdigital-gated HEMT plasma devices for solid-state THz wave amplifier. Microelectron. J 2007, 38, 1268–1272, doi:10.1016/j.mejo.2007.09.027.
[20]
Iwai, H. CMOS Technology—Year 2010 and beyond. IEEE J. Solid-State Circuits 1999, 34, 357–366, doi:10.1109/4.748187.
[21]
Patt, YN; Patel, SJ; Evers, M; Friendly, DH; Stark, J. One billion transistors, one uniprocessor, one chip. Computer 1997, 30, 51–57.
[22]
Lee, KT; Kang, CY; Park, MS; Lee, BH; Park, HK; Hwang, HS; Tseng, H-H; Jammy, R; Jeong, Y-H. A study of strain engineering using CESL stressor on reliability comparing effect of intrinsic mechanical stress. IEEE Electron Device Lett 2009, 30, 760–762, doi:10.1109/LED.2009.2021007.
[23]
Wu, M; Alivov, YI; Morkoc, H. High-κ dielectrics and advanced channel concepts for Si MOSFET. J. Mater. Sci. Mater. Electron 2008, 19, 915–951, doi:10.1007/s10854-008-9713-2.
[24]
Mori, T; Azuma, Y; Tsuchiya, H; Miyoshi, T. Comparative study on drive current of III–V semiconductor, Ge and Si channel n-MOSFETs based on quantum-corrected Monte Carlo simulation. IEEE Trans. Nanotechnol 2008, 7, 237–241, doi:10.1109/TNANO.2007.915002.
[25]
Houdre, R; Morkoc, H. Properties of molecular beam epitaxial grown GaAs on Si. Crit. Rev. Solid State Mater. Sci 1990, 16, 91–114, doi:10.1080/10408439008243746.
[26]
Dyakonov, M; Shur, MS. Detection, mixing, and frequency multiplication of Terahertz radiation by two dimensional electronic fluid. IEEE Trans. Electron Devices 1996, 43, 380–387, doi:10.1109/16.485650.
[27]
Grémion, E; Niepce, D; Cavanna, A; Gennser, U; Jin, Y. Evidence of a fully ballistic one-dimensional field-effect transistor: Experiment and simulation. Appl. Phys. Lett 2010, 97, 233505, doi:10.1063/1.3521466.
[28]
Tsuchiya, T. Enhancement of spatial spin coherence in GaAs quantum wells. J. Phys. Conf. Ser 2007, 61, 1191–1195, doi:10.1088/1742-6596/61/1/235.
[29]
Arai, Y; Sakuta, M; Takano, H; Ushikubo, T; Furukawa, R; Kobayashi, M. Optical devices from AlGaAs-GaAs HBTs heavily doped with amphoteric Si. IEEE Trans. Electron. Devices 1995, 42, 632–638, doi:10.1109/16.372066.
[30]
Bordel, D; Rajesh, M; Nishioka, M; Augendre, E; Clavelier, L; Guimard, D; Arakawa, Y. Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon substrate for silicon photonics. Phys. E 2010, 42, 2765–2767, doi:10.1016/j.physe.2009.11.096.
[31]
Bordel, D; Guimard, D; Rajesh, M; Nishioka, M; Augendre, E; Clavelier, L; Arakawa, Y. Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band. Appl. Phys. Lett 2010, 96, 043101, doi:10.1063/1.3292591.
[32]
Tanoto, H; Yoon, SF; Ngo, CY; Loke, WK; Dohrman, C; Fitzgerald, EA; Narayanan, B. Structural and optical properties of stacked self-assembled InAs/InGaAs quantum dots on graded Si1?xGex/Si substrate. Appl. Phys. Lett 2009, 92, 213115.
[33]
Hudait, MK; Krupanidhi, SB. Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures. Phys. B 2001, 307, 125–137, doi:10.1016/S0921-4526(01)00631-7.
[34]
Wen, CP. Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal. gryromagnetic device application. IEEE Trans. Microwave Theory Tech 1969, 17, 1087–1088, doi:10.1109/TMTT.1969.1127105.
[35]
Zhang, DH. Metal contacts to n-type AlGaAs grown by molecular beam epitaxy. Mater. Sci. Eng 1999, B60, 189–193.
[36]
Yoo, TW; Chang, K. Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans. Microwave Theory Tech 1992, 40, 1259–1266, doi:10.1109/22.141359.
[37]
McSpadden, JO; Fan, L; Chang, K. Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna. IEEE Trans. Microwave Theory Tech 1998, 46, 2053–2060, doi:10.1109/22.739282.
[38]
Jeon, W. Design and Fabrication of On-Chip Microwave Pulse Power DetectorsPh.D. Thesis, University of Maryland, College Park, MD, USA. 2005.
[39]
Tan, MLP; Saxena, T; Arora, VK. Resistance blow-up effect in micro-circuit engineering. Solid-State Electron 2010, 54, 1617–1624, doi:10.1016/j.sse.2010.06.024.
[40]
Tan, MLP; Saad, I; Ismail, R; Arora, VK. Enhancement of nano-RC switching delay due to the resistance blow-up in InGaAs. NANO 2007, 2, 233–237.
[41]
Greenberg, DR; Alamo, JA. Velocity saturation in the extrinsic device: A fundamental limit to HFET's. IEEE Trans. Electron Devices 1994, 41, 1334–1339, doi:10.1109/16.297726.
[42]
Nahas, JJ. Modeling and computer simulation of a microwave-to-dc energy conversion element. IEEE Trans. Microwave Theory Tech 1975, 23, 1030–1035, doi:10.1109/TMTT.1975.1128737.