We present an alternative post-processing on a CMOS chip to release a planar microelectrode array (pMEA) integrated with its signal readout circuit, which can be used for monitoring the neuronal activity of vestibular ganglion neurons in newborn Wistar strain rats. This chip is fabricated through a 0.6 μm CMOS standard process and it has 12 pMEA through a 4 ?′ 3 electrodes matrix. The alternative CMOS post-process includes the development of masks to protect the readout circuit and the power supply pads. A wet etching process eliminates the aluminum located on the surface of the p+-type silicon. This silicon is used as transducer for recording the neuronal activity and as interface between the readout circuit and neurons. The readout circuit is composed of an amplifier and tunable bandpass filter, which is placed on a 0.015 mm2 silicon area. The tunable bandpass filter has a bandwidth of 98 kHz and a common mode rejection ratio (CMRR) of 87 dB. These characteristics of the readout circuit are appropriate for neuronal recording applications.
References
[1]
Jones, I.L.; Livi, P.; Lewandowska, M.K.; Fiscella, M.; Roscic, B.; Hierlemann, A. The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics. Anal. Bioanal. Chem 2011, 399, 2313–2329.
[2]
Chai, K.T.C.; Hammond, P.A.; Cumming, D.R.S. Modification of a CMOS microelectrode array for a bioimpedance imaging system. Sens. Actuat. B 2005, 111–112, 305–309.
[3]
Frey, U.; Sanchez-Bustamante, C.D.; Ugniwenko, T.; Heer, F.; Sedivy, J.; Hafizovic, S.; Roscic, B.; Fussenegger, M.; Blau, A.; Egert, U.; Hierlemann, A. Cell recordings with a CMOS high-density microelectrode array. Proceedings of EMBS 2007: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 23–26 August 2007; pp. 167–170.
Kim, J.-W.; Takao, H.; Sawada, K.; Ishida, M. Integrated inductors for RF transmitters in CMOS/MEMS smart microsensor systems. Sensors 2007, 7, 1387–1398.
[6]
Rottenberg, X.; Brebels, S.; Ekkels, P.; Czarnecki, P.; Nolmans, P.; Mertens, R.P.; Nauwelaers, B.; Puers, R.; De Wolf, I.; De Raedt, W.; Tilmans, H.A.C. An electrostatic fringing-filed actuator (EFFA): Application towards a low-complexity thin-film RF-MEMS technology. J. Micromech. Microeng 2007, 17, S204–S210.
[7]
Kirstein, K.U.; Sedivy, J.; Salo, T.; Hagleitner, C.; Vancura, T.; Baltes, H. A CMOS-based tactile sensor for continuous blood pressure monitoring. Proceedings of ESSCIRC 2004: The 30th European Solid-State Circuits Conference, Leuven, Belgium, 21–23 September 2004; pp. 463–466.
[8]
Xie, H.; Pan, Y.; Fedder, G.K. A CMOS-MEMS mirror with curled-hinge comb drives. J. Microelectromech. Syst 2003, 12, 450–457.
[9]
Cheng, Y.C.; Dai, C.L.; Lee, C.Y.; Chen, P.H.; Chang, P.Z. A MEMS micromirror fabricating using CMOS post-process. Sens. Actuat. A 2005, 120, 573–581.
[10]
Baltes, H.; Brand, O.; Hierlemann, A.; Lange, D.; Hagleitner, C. CMOS MEMS present and future. Proceedings of MEMS 2002: The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 20–24 January 2002; pp. 459–466.
[11]
Dai, C.L.; Chiou, J.H.; Lu, M.S.C. A maskless post-CMOS bulk micromachining process and its application. J. Micromech. Microeng 2005, 15, 2366–2371.
[12]
Xie, H.; Erdmann, L.; Zhu, X.; Gabriel, K.J.; Fedder, G.K. Post-CMOS processing for high aspect ratio integrated silicon microestructures. J. Microelectromech. Syst 2002, 11, 93–101.
[13]
Dai, C.L.; Yu, W.C. A micromachined tunable resonator fabricated by the CMOS post-process of etching silicon dioxide. Microsyst. Technol 2006, 12, 766–772.
[14]
Gianchandani, B.Y.; Kim, H.; Shinn, M.; Ha, B.; Lee, B.; Najafi, K.; Song, C. A fabricated process for integrating polysilicon microstructures with post-processed CMOS circuits. J. Micromech. Microeng 2000, 10, 380–386.
[15]
Cheng, Y.C.; Dai, C.L.; Lee, C.Y.; Chen, P.H.; Chang, P.Z. A circular micromirror array fabricated by a maskless post-CMOS process. Microsyst. Technol 2005, 11, 444–451.
[16]
Trombly, N.; Mason, A. Post-CMOS electrode formation and isolation for on-chip temperature controlled electrochemical sensors. Electron. Lett 2008, 44, 29–30.
[17]
Berney, H.; Hill, M.; Cotter, D.; Hynes, E.; O’Neill, M.; Lane, W.A. Determination of the effect of processing steps on the CMOS compatibility of a surface micromachined pressure sensor. J. Micromech. Microeng 2001, 11, 402–408.
[18]
Tsai, M.H.; Sun, C.M.; Liu, Y.C.; Wang, C.; Fang, W. Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors. J. Micromech. Microeng 2009, 19, 105017.
[19]
Baltes, H.; Brand, O.; Fedder, G.K.; Hierold, C.; Korvink, J.; Tabata, O. CMOS-MEMS: Advanced Micro and Nanosystems; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; Volume 2, pp. 1–68.
[20]
Fernández, D.; Ricart, J.; Madrenas, J. Experiments on the release of CMOS micromachined metal layers. J. Sensors 2010, 2010, 937301.
[21]
Dai, C.L.; Lu, P.W.; Wu, C.C.; Chang, C. Fabrication of wireless micro pressure sensor using the CMOS process. Sensors 2009, 9, 8748–8760.
[22]
Liu, M.C.; Dai, C.L.; Chan, C.H.; Wu, C.C. Manufacture of a polyaniline nanofiber ammonia sensor integrated with a readout circuit using the CMOS-MEMS technique. Sensors 2009, 9, 869–880.
[23]
Dai, C.L.; Chen, J.H. Low voltage actuated RF micromechanical switches fabricated using CMOS MEMS technique. Microsyst. Technol 2006, 12, 1143–1151.
[24]
Jiang, L.; Pandraud, G.; French, J.P.; Spearing, M.S.; Kraft, M. A novel method for nanoprecision alignment in wafer bonding applications. J. Micromech. Microeng 2007, 17, S61–S67.
[25]
Song, H.; Ming, G.; He, Z.; Lehmann, M.; McKerracher, L.; Tessier, L.M.; Poo, M. Conversional of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 1998, 281, 1515–1518.
[26]
Wattanapanitch, W.; Fee, M.; Sarpeshkar, R. An energy-efficent micropower neuronal recording amplifier. IEEE Trans. Biomed. Circ. Syst 2007, 1, 136–147.
[27]
On semiconductor?. Available online: http://www.onsemi.com/PowerSolutions/content.do?id=16693 (accessed on 12 August 2011).
[28]
Tracy, D.P.; Knorr, D.B.; Rodbell, K.P. Texture in multilayer metallization structures. J. Appl. Phys 1994, 76, 2671–2680.
[29]
Carvajal, R.G.; Ramírez, A.J.; López, M.A.J.; Torralba, A.G.; Carlosena, A.; Chavero, F.M. The flipped voltage follower: A useful cell for low-voltage low power circuit design. IEEE Trans. Circ. Syst 2005, 52, 1276–1291.
[30]
Olsson, R.H.; Buhl, D.L.; Sirota, A.M.; Buzsaki, G.; Wise, K.D. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulus with microelectrode arrays. IEEE Trans. Biomed. Eng 2005, 52, 1302–1311.
[31]
Integrated Circuit Foundry. Available online: http://www.mosis.com/ (accessed on 3 July 2010).
[32]
Sandison, M.E.; Zagnoni, M.; Abu-Hantash, M.; Morgan, H. Micromachined glass apertures for artificial lipid bilayer formation in a microfluidic system. J. Micromech. Microeng 2007, 17, S189–S196.
[33]
Precision Brand?. Available online: http://www.precisionbrand.com (accessed on 24 May 2010).
[34]
Electron Microscopy Sciences. Available online: http://www.emsdiasum.com/microscopy/default.aspx (accessed on 2 June 2010).
[35]
Microresist Technology. Available online: http://www.microresist.de/home_en.htm (accessed on 18 May 2010).
[36]
Soto, E.; Limón, A.; Ortega, A.; Vega, R. Características morfológicas y electrofisiológicas de las neuronas del ganglio vestibular en cultivo. Gaceta Médica de México 2002, 138, 1–14.
[37]
Limón, A.; Pérez, C.; Vega, R.; Soto, E. Ca2+-activated K+-current density is correlated with soma size in rat vestibular-afferent neurons in culture. J. Neurophysiol 2005, 94, 3751–3761.
[38]
Majidzadeh, V.; Schmid, A.; Leblebici, Y. A micropower neuronal recording amplifier with improved noise efficiency factor. Proceedings of IEEE European Conference on Circuit Theory and Design, Antalya, Turkey, 23–27 August 2009; pp. 319–322.