全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Reconstruction of Self-Sparse 2D NMR Spectra from Undersampled Data in the Indirect Dimension

DOI: 10.3390/s110908888

Keywords: NMR, spectral reconstruction, sparsity, undersampling, compressed sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reducing the acquisition time for two-dimensional nuclear magnetic resonance (2D NMR) spectra is important. One way to achieve this goal is reducing the acquired data. In this paper, within the framework of compressed sensing, we proposed to undersample the data in the indirect dimension for a type of self-sparse 2D NMR spectra, that is, only a few meaningful spectral peaks occupy partial locations, while the rest of locations have very small or even no peaks. The spectrum is reconstructed by enforcing its sparsity in an identity matrix domain with ?p (p = 0.5) norm optimization algorithm. Both theoretical analysis and simulation results show that the proposed method can reduce the reconstruction errors compared with the wavelet-based ?1 norm optimization.

References

[1]  Bretthorst, GL. Nonuniform sampling: Bandwidth and aliasing. Concept Magn. Reson. A 2008, 32A, 417–435, doi:10.1002/cmr.a.20125.
[2]  Maciejewski, MW; Qui, HZ; Rujan, I; Mobli, M; Hoch, JC. Nonuniform sampling and spectral aliasing. J. Magn. Reson 2009, 199, 88–93, doi:10.1016/j.jmr.2009.04.006. 19414274
[3]  Kazimierczuk, K; Kozminski, W; Zhukov, I. Two-dimensional fourier transform of arbitrarily sampled NMR data sets. J. Magn. Reson 2006, 179, 323–328, doi:10.1016/j.jmr.2006.02.001. 16488634
[4]  Kazimierczuk, K; Zawadzka, A; Kozminski, W. Optimization of random time domain sampling in multidimensional NMR. J. Magn. Reson 2008, 192, 123–130, doi:10.1016/j.jmr.2008.02.003. 18308599
[5]  Vosegaard, T; Nielsen, NC. Defining the sampling space in multidimensional NMR experiments: What should the maximum sampling time be? J. Magn. Reson 2009, 199, 146–158, doi:10.1016/j.jmr.2009.04.007. 19428277
[6]  Mobli, M; Hoch, JC. Maximum entropy spectral reconstruction of nonuniformly sampled data. Concept Magn. Reson. A 2008, 32A, 436–448, doi:10.1002/cmr.a.20126.
[7]  Jee, JG. Real-time acquisition of three dimensional NMR spectra by non-uniform sampling and maximum entropy processing. Bull. Korean Chem. Soc 2008, 29, 2017–2022, doi:10.5012/bkcs.2008.29.10.2017.
[8]  Coggins, BE; Zhou, P. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN. J. Biomol. NMR 2008, 42, 225–239, doi:10.1007/s10858-008-9275-x. 18853260
[9]  Yoon, JW; Godsill, SJ. Bayesian inference for multidimensional NMR image reconstruction. Proceedings of the European Signal Processing Conference (EUSIPCO), Florence, Italy, 4–8 September 2006.
[10]  Lin, MJ; Huang, YQ; Chen, X; Cai, SH; Chen, Z. High-resolution 2D NMR spectra in inhomogeneous fields based on intermolecular multiple-quantum coherences with efficient acquisition schemes. J. Magn. Reson 2011, 208, 87–94, doi:10.1016/j.jmr.2010.10.009. 21051250
[11]  Candes, EJ; Romberg, J; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 2006, 52, 489–509, doi:10.1109/TIT.2005.862083.
[12]  Donoho, DL. Compressed sensing. IEEE Trans. Inform. Theory 2006, 52, 1289–1306, doi:10.1109/TIT.2006.871582.
[13]  Lustig, M; Donoho, D; Pauly, JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med 2007, 58, 1182–1195, doi:10.1002/mrm.21391. 17969013
[14]  Duarte, MF; Davenport, MA; Takhar, D; Laska, JN; Sun, T; Kelly, KF; Baraniuk, RG. Single-pixel imaging via compressive sampling. IEEE Signal Proc. Mag 2008, 25, 83–91, doi:10.1109/MSP.2007.914730.
[15]  Wright, J; Yang, AY; Ganesh, A; Sastry, SS; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal 2009, 31, 210–227, doi:10.1109/TPAMI.2008.79.
[16]  Drori, I. Fast l1 minimization by iterative thresholding for multidimensional NMR spectroscopy. EURASIP J Adv Sig Proc 2007, doi:10.1155/2007/20248.
[17]  Matsuki, Y; Eddy, MT; Herzfeld, J. Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J. Am. Chem. Soc 2009, 131, 4648–4656, doi:10.1021/ja807893k. 19284727
[18]  Kazimierczuk, K; Orekhov, VY. Accelerated NMR spectroscopy by using compressed sensing. Angew. Chem. Int. Ed 2011, 50, 5556–5559, doi:10.1002/anie.201100370.
[19]  Holland, DJ; Bostock, MJ; Gladden, LF; Nietlispach, D. Fast multidimensional NMR spectroscopy using compressed sensing. Angew. Chem. Int. Ed 2011, 50, 6548–6551, doi:10.1002/anie.201100440.
[20]  Shrot, Y; Frydman, L. Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications. J. Magn. Reson 2011, 209, 352–358, doi:10.1016/j.jmr.2011.01.017. 21316276
[21]  Hoch, JC; Stern, AS. NMR Data Processing; Wiley-Liss: New York, NY, USA, 1996; p. 38.
[22]  Keeler, J. Understanding NMR Spectroscopy; Wiley: New York, NY, USA, 2005. Chapter 7,; pp. 1–30.
[23]  Aue, WP; Bartholdi, E; Ernst, RR. 2-Dimensional spectroscopy: Application to nuclear magnetic-resonance. J. Chem. Phys 1976, 64, 2229–2246, doi:10.1063/1.432450.
[24]  Ernst, RR; Bodenhausen, G; Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two dimensions; Oxford University Press: New York, NY, USA, 1990.
[25]  Frydman, L; Scherf, T; Lupulescu, A. The acquisition of multidimensional NMR spectra within a single scan. Proc. Natl. Acad. Sci. USA 2002, 99, 15858–15862, doi:10.1073/pnas.252644399. 12461169
[26]  De Graaf, RA. In Vivo , 3rd ed ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 389–444.
[27]  Donoho, DL; Huo, XM. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 2001, 47, 2845–2862, doi:10.1109/18.959265.
[28]  Candes, E; Romberg, J. Sparsity and incoherence in compressive sampling. Inverse Probl 2007, 23, 969–985, doi:10.1088/0266-5611/23/3/008.
[29]  Candès, EJ; Romberg, J. Practical signal recovery from random projections. Proceedings of the Wavelet Applications in Signal and Image Processing XI, San Diego, CA, USA, 31 July–4 August 2005; p. 5914.
[30]  Elad, M. Optimized projections for compressed sensing. IEEE Trans. Signal Process 2007, 55, 5695–5702, doi:10.1109/TSP.2007.900760.
[31]  Hoch, JC; Maciejewski, MW; Filipovic, B. Randomization improves sparse sampling in multidimensional NMR. J. Magn. Reson 2008, 193, 317–320, doi:10.1016/j.jmr.2008.05.011. 18547850
[32]  Candes, EJ. The restricted isometry property and its implications for compressed sensing. Compt. Rendus Math 2008, 346, 589–592, doi:10.1016/j.crma.2008.03.014.
[33]  Stern, AS; Donoho, DL; Hoch, JC. NMR data processing using iterative thresholding and minimum l1-norm reconstruction. J. Magn. Reson 2007, 188, 295–300, doi:10.1016/j.jmr.2007.07.008. 17723313
[34]  Chartrand, R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Proc. Lett 2007, 14, 707–710, doi:10.1109/LSP.2007.898300.
[35]  Trzasko, J; Manduca, A. Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization. IEEE Trans. Med. Imaging 2009, 28, 106–121, doi:10.1109/TMI.2008.927346. 19116193
[36]  Qu, X; Cao, X; Guo, D; Hu, C; Chen, Z. Compressed sensing MRI with combined sparsifying transforms and smoothed l0 norm minimization. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP’10, Dallas, TX, USA, 14–19 March 2010; pp. 626–629.
[37]  Majumdar, A; Ward, R. Under-determined non-cartesian MR reconstruction with non-convex sparsity promoting analysis prior. Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI’10, Beijing, China, 20–24 September 2010; pp. 513–520.
[38]  Chartrand, R; Staneva, V. Restricted isometry properties and nonconvex compressive sensing. Inverse Probl 2008, 24, 1–14.
[39]  Chartrand, R. Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data. Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro—ISBI’09, Boston, MA, USA, 28 June–1 July 2009; pp. 262–265.
[40]  Yang, JF; Zhang, Y; Yin, WT. A fast alternating direction method for TV L1-L2 signal reconstruction from partial fourier data. IEEE J. Sel. Top. Signal Process 2010, 4, 288–297, doi:10.1109/JSTSP.2010.2042333.
[41]  Qu, XB; Zhang, WR; Guo, D; Cai, CB; Cai, SH; Chen, Z. Iterative thresholding compressed sensing MRI based on contourlet transform. Inverse Probl. Sci. En 2010, 18, 737–758, doi:10.1080/17415977.2010.492509.
[42]  Guo, D; Qu, XB; Huang, LF; Yao, Y. Sparsity-based spatial interpolation in wireless sensor networks. Sensors 2011, 11, 2385–2407, doi:10.3390/s110302385. 22163745
[43]  Zibulevsky, M; Elad, M. L1-L2 optimization in signal and image processing. IEEE Signal Proc. Mag 2010, 27, 76–88.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133