A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.
References
[1]
Alexis, M.; Morse, T.F. Specialty Optical Fibers Handbook; Elsevier: Amsterdam, The Netherland, 2007.
Smart Digital Optics. Available online: http://www.smartdigitaloptics.com (accessed on 22 August 2011).
[4]
Rashleigh, S.C.; Ulrigh, R. Magneto-optic current sensing with birefringent fiber. Appl. Phys. Lett 1979, 34, doi:10.1063/1.90667.
[5]
Orr, P.; Niewczas, P.; Stevenson, M.; Canning, J. Compound phase-shifted fiber Bragg structures as intrinsic magnetic field sensors. J. Lightwave Tech 2010, 28, 2667–2673, doi:10.1109/JLT.2010.2060314.
[6]
Henry, O.E.; Kazimierz, P.J.; Richard, I.L.; David, N.P. Optimal design of optical fibers for electric current measurement. Appl. Opt 1989, 28, 1977–1979, doi:10.1364/AO.28.001977. 20555450
[7]
Sun, L.; Jiang, S.; Marciante, J.R. All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber. Opt. Express 2010, 18, 5407–5412, doi:10.1364/OE.18.005407. 20389556
[8]
Satpathi, D.; Moore, J.A.; Ennis, M.G. Design of a Terfenol-D based fiber-optic current transducer. IEEE Sensors J 2005, 5, 1057–1065, doi:10.1109/JSEN.2005.850996.
[9]
Yang, M.H.; Dai, J.X.; Zhou, C.M.; Jiang, D.S. Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials. Opt. Express 2009, 17, 20777–20782, doi:10.1364/OE.17.020777. 19997310
[10]
Smith, G.N.; Allsop, T.; Kalli, K.; Koutsides, C.; Neal, R.; Sugden, K.; Culverhouse, P.; Bennion, I. Characterisation and performance of a Terfenol-D coated femtosecond laser inscribed optical fibre Bragg sensor with a laser ablated microslot for the detection of static magnetic fields. Opt. Express 2011, 19, 363–370, doi:10.1364/OE.19.000363. 21263575
[11]
Sedlar, M.; Matejec, V.; Paulicka, I. Optical fibre magnetic field sensors using ceramic magnetostrictive jackets. Sens. Actuat. A Phys 2000, 84, 297–302, doi:10.1016/S0924-4247(00)00403-9.
[12]
Cicero, M.; Adriana, L.C.T.; Arthur, M.B.B.; Canning, J.; Cook, K.; Roberth, L.; Victor, T. Operation of Optical Fiber Sensors in Hydrogen-Rich Atmosphere. Proceedings of the European Workshop on Optical Fiber Sensors, Porto, Portugal, 8–10 September 2010.
Canning, J.; Carter, A.L.G. Modal interferometer for in situ measurements of induce core index change in optical fibers. Opt. Lett 1997, 22, 561–563, doi:10.1364/OL.22.000561. 18183267
Szpulak, M.; Martynkien, T.; Urbanczyk, W. Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers. Appl. Opt 2004, 43, 4739–4744, doi:10.1364/AO.43.004739. 15352400
[17]
Martynkien, T.; Anuszkiewicz, A.; Statkiewicz-Barabach, G.; Olszewski, J.; Golojuch, G.; Szczurowski, M.; Urbanczyk, W.; Wojcik, J.; Mergo, P.; Makara, M.; Nasilowski, T.; Berghmans, F.; Thienpont, H. Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature. Appl. Phys. B 2009, 94, 635–640, doi:10.1007/s00340-009-3394-2.
[18]
Michie, A.; Canning, J.; Lyytik?inen, K.; ?slund, M.; Digweed, J. Temperature independent highly birefringent photonic crystal fibre. Opt. Express 2004, 12, 5160–5165, doi:10.1364/OPEX.12.005160. 19484072
[19]
Groothoff, N.; Canning, J.; Buckley, E.; Lyttikainen, K.; Zagari, J. Bragg gratings in air-silica structured fibers. Opt. Lett 2008, 28, 233–235.