全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Luminescence Sensors Applied to Water Analysis of Organic Pollutants—An Update

DOI: 10.3390/s111211081

Keywords: luminescence, sensors, pollutants, environment

Full-Text   Cite this paper   Add to My Lib

Abstract:

The development of chemical sensors for environmental analysis based on fluorescence, phosphorescence and chemiluminescence signals continues to be a dynamic topic within the sensor field. This review covers the fundamentals of this type of sensors, and an update on recent works devoted to quantifying organic pollutants in environmental waters, focusing on advances since about 2005. Among the wide variety of these contaminants, special attention has been paid polycyclic aromatic hydrocarbons, pesticides, explosives and emerging organic pollutants. The potential of coupling optical sensors with multivariate calibration methods in order to improve the selectivity is also discussed.

References

[1]  Stetter, J.R.; Penrose, W.R.; Yao, S. Sensors, Chemical Sensors, Electrochemical Sensors, and ECS. J. Electrochem. Soc 2003, 150, S11–S16.
[2]  Powe, A.M.; Das, S.; Lowry, M.; El-Zahab, B.; Fakayode, S.O.; Geng, M.L.; Baker, G.A.; Wang, L.; McCarroll, M.E.; Patonay, G.; et al. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Anal. Chem 2010, 82, 4865–4894.
[3]  Farré, M.; Kantiani, L.; Pérez, S.; Barceló, D. Sensors and Biosensors in Support of EU Directives. Trends Anal. Chem 2009, 28, 170–185.
[4]  Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem 2006, 78, 3859–3874.
[5]  Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem 2008, 80, 4269–4283.
[6]  Valcárcel, M.; Luque, M.D. Integration of Reaction (Retention) and Spectroscopic Detection in Continuous-Flow Systems. Analyst 1990, 115, 699–703.
[7]  Pejcic, B.; Eadington, P.; Ross, A. Environmental Monitoring of Hyfrocarbons: A Chemical Sensor Prespective. Environm. Sci. Technol 2007, 41, 6333–6342.
[8]  Fletcher, K.A.; Fakayode, S.O.; Lowry, M.; Tucker, S.A.; Neal, S.L.; Kimaru, I.W.; McCarroll, M.E.; Patonay, G.; Oldham, P.B.; Rusin, O.; et al. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Anal. Chem 2006, 78, 4047–4068.
[9]  Lowry, M.; Fakayode, S.O.; Geng, M.L.; Baker, G.A.; Wang, L.; McCarroll, M.E.; Patonay, G.; Warner, I.M. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Anal. Chem 2008, 80, 4551–4574.
[10]  Molina Díaz, A.; Ruiz Medina, A.; Fernández de Córdova, M.L. The Potential of Flow-through Optosensors in Pharmaceutical Analysis. J. Pharm. Biomed. Anal 2002, 28, 399–419.
[11]  Ruiz Medina, A.; Llorent Martínez, E.J. Recent Progress of Flow-Through Optosensing in Clinical and Pharmaceutical Analysis. J. Pharm. Biomed. Anal 2010, 53, 250–261.
[12]  Bosch Ojeda, C.; Sánchez Rojas, F. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis. Sensors 2006, 6, 1245–1307.
[13]  Wang, X.; Liu, M.L.; Cheng, X.L.; Lin, J.M. Flow-Based Luminescence-Sensing Methods for Environmental Water Analysis. Trends Anal. Chem 2009, 28, 75–87.
[14]  Woutersen, M.; Belkin, S.; Brouwer, B.; van Wezel, A.P.; Heringa, M.B. Are Luminescent Bacteria Suitable for Online Detection and Monitoring of Toxic Compounds in Drinking Water and its Sources? Anal. Bioanal. Chem 2011, 400, 915–929.
[15]  Vo-Dinh, T.; Fetzer, J.; Campiglia, A.D. Monitoring and Characterization of Polyaromatic Compounds in the Environment. Talanta 1998, 47, 943–969.
[16]  Hagestuen, E.D; Arruda, A.F.; Campiglia, A.D. On the Improvement of Solid-Phase Extraction Room-Temperature Phosphorimetry for the Analysis of Polycyclic Aromatic Hydrocarbons in Water Samples. Talanta 2000, 52, 727–737.
[17]  Adhikari, B.; Majumdar, S. Polymers in Sensor Applications. Prog. Polym. Sci 2004, 29, 699–766.
[18]  Molina Díaz, A.; García Reyes, J.F.; Gilbert López, B. Solid-Phase Spectroscopy from the Point of View of Green Analytical Chemistry. Trends Anal. Chem 2010, 29, 654–662.
[19]  Hurtubise, R.J. Solid-Surface Luminescence Spectrometry. Anal. Chem 1989, 61, 889A–895A.
[20]  Matsuoka, S.; Yoshimura, K. Recent Trends in Solid Phase Spectrometry: 2003–2009. A Review. Anal. Chim. Acta 2010, 664, 1–18.
[21]  Fernández Sánchez, J.F.; Segura Carretero, A.; Costa Fernández, J.M.; Bordel, N.; Pereiro, R.; Cruces Blanco, C.; Sanz Medel, A.; Fernández Gutiérrez, A. Fluorescence Optosensors Based on Different Transducers for the Determination of Polycyclic Aromatic Hydrocarbons in Water. Anal. Bioanal. Chem 2003, 377, 614–623.
[22]  Mesquita, R.B.R.; Rangel, A.O.S.S. A Review on Sequential Injection Methods for Water Analysis. Anal. Chim. Acta 2009, 648, 7–22.
[23]  van Staden, J.F. Solving the Problems of Sequential Injection Systems as Process Analyzers. Anal. Chim. Acta 2002, 467, 61–73.
[24]  Morais, I.P.A.; Miró, M.; Manera, M.; Estela, J.M.; Cerdà, V.; Souto, M.R.S.; Rangel, A.O.S.S. Flow-Through Solid-Phase Based Optical Sensor for the Multisyringe Flow Injection Trace Determination of Orthophosphate in Waters with Chemiluminescence Detection. Anal. Chim. Acta 2004, 506, 17–24.
[25]  Miró, M.; Estela, J.M.; Cerdá, V. Potentials of Multisyrenge Flow Injection Analysis for Chemiluminescence Detection. Anal. Chim. Acta 2005, 541, 57–68.
[26]  Ruzicka, J.; Scampavia, L. From Flow Injection to Bead Injection. Anal. Chem 1999, 71, 257A–263A.
[27]  Miró, M.; Hartwell, S.K.; Jakmunee, J.; Grudpan, K.; Hansen, E.H. Recent Developments in Automatic Solid-Phase Extraction with Renewable Surfaces Exploiting Flow-Based Approaches. Trends Anal. Chem 2008, 27, 749–761.
[28]  Rocha, F.R.P.; Reis, B.F.; Zagatto, E.A.G.; Lima, J.L.F.C.; Lapa, R.A.S.; Santos, J.L.M. Multicommutation in Flow Analysis: Concepts, Applications and Trends. Anal. Chim. Acta 2002, 468, 119–131.
[29]  Llorent Martínez, E.J.; Domínguez Vidal, A.; Ortega Barrales, P.; de la Guardia, M.; Molina Díaz, A. Implementation of Multicommutation Principle with Flow-through Multioptosensors. Anal. Chim. Acta 2005, 545, 113–118.
[30]  García Reyes, J.F.; Llorent-Martínez, E.J.; Ortega Barrales, P.; Molina Díaz, A. The Potential of Combining Solid-Phase Optosensing and Multicommutation Principles for Routine Analyses of Pharmaceuticals. Talanta 2006, 68, 1482–1488.
[31]  Piccirilli, G.N.; Escandar, G.M. A Novel Flow-through Fluorescence Optosensor for the Determination of Thiabendazole. Anal. Chim. Acta 2007, 601, 196–203.
[32]  Piccirilli, G.N.; Escandar, G.M. Flow Injection Analysis with On-line Nylon Powder Extraction for Room Temperature Phosphorescence Determination of Thiabendazole. Anal. Chim. Acta 2009, 646, 90–96.
[33]  Capitán Vallvey, L.F.; Palma, A.J. Recent Developments in Handheld and Portable Optosensing—A Review. Anal. Chim. Acta 2011, 696, 27–46.
[34]  Alvarez, A.; Salinas Castillo, A.; Costa Fernández, J.M.; Pereiro, R.; Sanz-Medel, A. Fluorescent Conjugated Polymers for Chemical and Biochemical Sensing. Trends Anal. Chem 2011, 30, 1513–1525.
[35]  Zhong, W. Nanomaterials in Fluorescence Based Biosensing. Anal. Bioanal. Chem 2009, 394, 47–59.
[36]  Costa Fernandez, J.M.; Pereiro, R.; Sanz Medel, A. The Use of Luminescent Quantum Dots for Optical Sensing. Trends Anal. Chem 2006, 25, 207–218.
[37]  Jerónimo, P.C.A.; Araújo, A.N.; Montenegro, M.C.B.S.M. Optical Sensors and Biosensors Based on Sol-Gel Films. Talanta 2007, 72, 13–27.
[38]  Sánchez Barragán, I.; Costa Fernández, J.M.; Valledor, M.; Campo, J.C.; Sanz Medel, A. Room Temperature Phosphorescence (RTP) for Optical Sensing. Trends Anal. Chem 2006, 25, 958–966.
[39]  Sanz Medel, A. Solid Surface Photoluminescence and Flow Analysis: A Happy Marriage. Anal. Chim. Acta 1993, 283, 367–378.
[40]  Doong, R.A.; Tsai, H.C. Immobilization and Characterization of Sol-Gel-Encapsulated Acetylcholinesterase Fiber-Optic Biosensor. Anal. Chim. Acta 2001, 434, 239–246.
[41]  Henry, O.Y.F.; Cullen, D.C.; Piletsky, S.A. Optical Interrogation of Molecular Imprinted Polymers and Development of MIP sensors: A Review. Anal. Bioanal. Chem 2005, 382, 947–956.
[42]  Beltran, A.; Borrull, F.; Cormack, P.A.G.; Marcé, R.M. Molecularly-Imprinted Polymers: Useful Sorbents for Selective Extractions. Trends Anal. Chem 2010, 29, 1363–1375.
[43]  Caro, E.; Marcé, R.M.; Borrull, F.; Cormack, P.A.G.; Sherrington, D.C. Application of Molecularly Imprinted Polymers to Solid-Phase Extraction of Compounds from Environmental and Biological Samples. Trends Anal. Chem 2006, 25, 143–154.
[44]  Medina Castillo, A.L.; Mistlberger, G.; Fernández Sánchez, J.F.; Segura Carretero, A.; Klimant, I.; Fernández Gutierrez, A. Novel Strategy to Design Magnetic, Molecular Imprinted Polymers with Well-Controlled Structure for the Application in Optical Sensors. Macromolecules 2010, 43, 55–61.
[45]  Ballesteros Gómez, A.; Rubio, S. Recent Advances in Environmental Analysis. Anal. Chem 2011, 83, 4579–4613.
[46]  Escandar, G.M.; Faber, N.M.; Goicoechea, H.C.; Mu?oz de la Pe?a, A.; Olivieri, A.C.; Poppi, R.J. Second- and Third-Order Multivariate Calibration: Data, Algorithms and Applications. Trends Anal. Chem 2007, 26, 752–765.
[47]  Valero Navarro, A.; Damiani, P.C.; Fernández Sánchez, J.F.; Segura Carretero, A.; Fernández Gutiérrez, A. Chemometric-Assisted MIP-Optosensing System for the Simultaneous Determination of Monoamine Naphthalenes in Drinking Waters. Talanta 2009, 78, 57–65.
[48]  Piccirilli, G.N.; Escandar, G.M. Second-Order Advantage with Excitation-Emission Fluorescence Spectroscopy and a Flow-through Optosensing Device. Simultaneous Determination of Thiabendazole and Fuberidazole in the Presence of Uncalibrated Interferences. Analyst 2010, 135, 1299–1308.
[49]  Futoma, J.D.; Smith, S.R.; Smith, E.T.; Tanaka, J. Polycyclic Aromatic Hydrocarbons in Water Systems; CRC Press: Boca Raton, FL, USA, 1981.
[50]  Drinking Water Contaminants, Available online http://www.epa.gov/safewater/contaminants/dw_contamfs/benzopyr.html (accessed on 27 September 2011).
[51]  Council Directive 98/83/EC, Available online: http://ec.europa.eu/environment/enlarg/handbook/water.pdf (accessed on 27 September 2011).
[52]  Salinas Castillo, A.; Fernández Sánchez, J.F.; Segura Carretero, A.; Fernández Gutiérrez, A. Solid-Surface Phosphorescence Characterization of Polycyclic Aromatic Hydrocarbons and Selective Determination of Benzo[a]pyrene in Water Samples. Anal. Chim. Acta 2005, 550, 53–60.
[53]  Sánchez Barragán, I.; Costa Fernández, J.M.; Pereiro, R.; Sanz Medel, A.; Salinas, A.; Segura Carretero, A.; Fernández Gutiérrez, A.; Ballesteros, A.; González, J.M. Fluoranthene Molecularly Imprinted Polymers Based on Iodinated Monomers for Selective Room-Temperature Phosphorescence Optosensing of Fluoranthene in Water. Anal. Chem 2005, 77, 7005–7011.
[54]  Bortolato, S.A.; Arancibia, J.A.; Escandar, G.M. A Novel Application of Nylon Membranes to the Luminescent Determination of Benzo[a]pyrene at Ultra Trace Levels in Water Samples. Anal. Chim. Acta 2008, 613, 218–227.
[55]  Bortolato, S.A.; Arancibia, J.A.; Escandar, G.M. Chemometrics-Assisted Excitation-Emission Fluorescence Spectroscopy on Nylon Membranes. Simultaneous Determination of Benzo[a]pyrene and Dibenz[a,h]anthracene at Parts-Per-Trillion Levels in the Presence of the Remaining EPA PAH Priority Pollutants As Interferences. Anal. Chem 2008, 80, 8276–8286.
[56]  Bortolato, S.A.; Arancibia, J.A.; Escandar, G.M. Chemometrics Assisted Fluorimetry for the Rapid and Selective Determination of Heavy Polycyclic Aromatic Hydrocarbons in Contaminated River Waters and Activated Sludges. Environ. Sci. Technol 2011, 45, 1513–1520.
[57]  Water Framework Directive (2000/60/EC); European Union: Brussels, Belgium, 2000.
[58]  Llorent Martínez, E.J.; Ortega Barrales, P.; Fernández de Córdova, M.L.; Ruiz Medina, A. Trends in Flow-Based Analytical Methods Applied to Pesticide Detection: A Review. Anal. Chim. Acta 2011, 684, 21–30.
[59]  Escandar, G.M. Fungicides: Chemistry, Environmental Impact and Health Effects; De Costa, P., Bezerra, P., Eds.; Nova Science Publishers: New York, NY, USA, 2009. Chapter 7..
[60]  Llorent Martínez, E.J.; Ortega Barrales, P.; Molina Díaz, A. Multi-Commutated Flow-Through Multi-Optosensing: A Tool for Environmental Analysis. Spectrosc. Lett 2006, 39, 619–629.
[61]  Domínguez Vidal, A.; Ortega Barrales, P.; Molina Díaz, A. Environmental Water Samples Analysis of Pesticides by Means of Chemometrics Combined with Fluorimetric Multioptosensing. J. Fluoresc 2007, 17, 271–277.
[62]  Correa, R.A.; Escandar, G.M. A New Analytical Application of Nylon-Induced Room-Temperature Phosphorescence: Determination of Thiabendazole in Water Samples. Anal. Chim. Acta 2006, 571, 58–65.
[63]  Piccirilli, G.N.; Escandar, G.M. Partial Least-Squares with Residual Bilinearization for the Spectrofluorimetric Determination of Pesticides. A Solution of the Problems of Inner-Filter Effects and Matrix Interferents. Analyst 2006, 131, 1012–1020.
[64]  Viveros, L.; Paliwal, S.; McCrae, D.; Wild, J.; Simonian, A. A Fluorescence-Based Biosensor for the Detection of Organophosphate Pesticides and Chemical Warfare Agents. Sens. Actuat. B 2006, 115, 150–157.
[65]  López Flores, J.; Molina Díaz, A.; Fernández de Córdova, M.L. Development of a Photochemically Induced Fluorescence-Based Optosensor for the Determination of Imidacloprid in Peppers and Environmental Waters. Talanta 2007, 72, 991–997.
[66]  Wang, H.F.; He, Y.; Ji, T.R.; Yan, X.P. Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water. Anal. Chem 2009, 81, 1615–1621.
[67]  Varsamis, D.G.; Touloupakis, E.; Morlacchi, P.; Ghanotakis, D.F.; Giardi, M.T.; Cullen, D.C. Development of a Photosystem II-Based Optical Microfluidic Sensor for Herbicide Detection. Talanta 2008, 77, 42–47.
[68]  Podola, B.; Melkonian, M. Selective Real-Time Herbicide Monitoring by an Array Chip Biosensor Employing Diverse Microalgae. J. Appl. Phycol 2005, 17, 261–271.
[69]  Herranz, S.; Ramón Azcón, J.; Benito Pe?a, E.; Marazuela, M.D.; Marco, M.P.; Moreno Bondi, M.C. Preparation of antibodies and Development of a Sensitive Immunoassay with Fluorescence Detection for Triazine Herbicides. Anal. Bioanal. Chem 2008, 391, 1801–1812.
[70]  López Flores, J.; Fernández de Córdova, M.L.; Molina Díaz, A. Flow-Through Optosensing Device Implemented with Photochemically-Induced Fluorescence for the Rapid and Simple Screening of Metsulfuron Methyl in Environmental Waters. J. Environ. Monit 2009, 11, 1080–1085.
[71]  Piccirilli, G.N.; Escandar, G.M.; Ca?ada Ca?ada, F.; Durán Merás, I.; Mu?oz de la Pe?a, A. Flow-through Photochemically Induced Fluorescence Optosensor for the Determination of Linuron. Talanta 2008, 77, 852–857.
[72]  Pulido Tofi?o, P.; Barrero Moreno, J.M.; Pérez Conde, M.C. Analysis of Isoproturon at Trace Level by Solid Phase Competitive Fluoroimmunosensing after Enrichment in a Sol-Gel Immunosorbent. Anal. Chim. Acta 2006, 562, 122–127.
[73]  Fernández Argüelles, M.T.; Ca?abate, B.; Segura Carretero, A.; Costa, J.M.; Pereiro, R.; Sanz Medel, A.; Fernández Gutiérrez, A. Flow-Through Optosensing of 1-Naphthaleneacetic Acid in Water and Apples by Heavy Atom Induced-Room Temperature Phosphorescence Measurements. Talanta 2005, 66, 696–702.
[74]  Casado Terrones, S.; Fernández Sánchez, J.F.; Segura Carretero, A.; Fernández Gutiérrez, A. The Development and Comparison of a Fluorescence and a Phosphorescence Optosensors for Determining the Plant Growth Regulator 2-Naphthoxyacetic Acid. Sens. Actuat. B 2005, 107, 929–935.
[75]  Llorent Martínez, E.J.; García Reyes, J.F.; Ortega Barrales, P.; Molina Díaz, A. Flow-Through Fluorescence-Based Optosensor with On-line Solid-Phase Separation for the Simultaneous Determination of a Ternary Pesticide Mixture. J. AOAC Int 2005, 88, 860–865.
[76]  López Flores, J.; Fernández de Córdova, M.L.; Molina Díaz, A. Simultaneous Flow-Injection Solid-Phase Fluorometric Determination of Thiabendazole and Metsulfuron Methyl Using Photochemical Derivatization. Anal. Sci 2009, 25, 681–686.
[77]  Juhasz, A.L.; Naidu, R. Explosives: Fate, Dynamics, and Ecological Impact in Terrestrial and Marine Environments. Rev. Environ. Contam. Toxicol 2007, 191, 163–215.
[78]  Singh, S. Sensors—An Effective Approach for the Detection of Explosives. J. Hazard. Mat 2007, 144, 15–28.
[79]  Jenkins, A.L.; Yin, R.; Jensen, J.L.; Durst, H.D. Molecularly Imprinted Polymers for the Detection of Chemical Agents in Water. ACS Symp. Ser 2005, 891, 63–80.
[80]  Jenkins, A.L.; Bae, S.Y. Molecularly Imprinted Polymers for Chemical Agent Detection in Multiple Water Matrices. Anal. Chim. Acta 2005, 542, 32–37.
[81]  Health Advisory for TNT, Criteria and Standard Division, Office of Drinking Water; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 1989.
[82]  Li, J.; Kenclig, C.E.; Nesterov, E.E. Chemosensory Performance of Molecularly Imprinted Fluorescent Conjugated Polymer Materials. J. Am. Chem. Soc 2007, 129, 15911–15918.
[83]  Gao, D.; Wang, Z.; Liu, B.; Ni, L.; Wu, M.; Zhang, Z. Resonance Energy Transfer-Amplifying Fluorescence Quenching at the Surface of Silica Nanoparticles toward Ultrasensitive Detection of TNT. Anal. Chem 2008, 80, 8545–8553.
[84]  Stringer, R.C.; Gangopadhyay, S.; Grant, S.A. Detection of Nitroaromatic Explosives Using a Fluorescent-Labeled Imprinted Polymer. Anal. Chem 2010, 82, 4015–4019.
[85]  Woodka, M.D.; Schnee, V.P. Fluorescent Polymer Sensor Array for Detection and Discrimination of Explosives in Water. Anal. Chem 2010, 82, 9917–9924.
[86]  Zou, W.S.; Sheng, D.; Ge, X.; Qiao, J.Q.; Lian, H.Z. Room-Temperature Phosphorescence Chemosensor and Rayleigh Scattering Chemodosimeter Dual-Recognition Probe for 2,4,6-Trinitrotoluene Based on Manganese-Doped ZnS Quantum Dots. Anal. Chem 2011, 83, 30–37.
[87]  National Recommended Water Quality Criteria; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 2004.
[88]  Wang, X.; Zeng, H.; Zhao, L.; Lin, J.M.A. Selective Optical Chemical Sensor for 2,6-Dinitrophenol Based on Fluorescence Quenching of a Novel Functional Polymer. Talanta 2006, 70, 160–168.
[89]  Wang, X.; Zeng, H.; Wei, Y.; Lin, J.M. A Reversible Fluorescence Sensor Based on Insoluble β-Cyclodextrin Polymer for Direct Determination of Bisphenol A (BPA). Sens. Actuat. B 2006, 114, 565–572.
[90]  Wang, X.; Zeng, H.; Zhao, L.; Lin, J.M. Selective Determination of Bisphenol A (BPA) in Water by a Reversible Fluorescence Sensor Using Pyrene/Dimethyl β-Cyclodextrin Complex. Anal. Chim. Acta 2006, 556, 313–318.
[91]  Rodríguez Mozaz, S.; Lopez de Alda, M.; Barceló, D. Analysis of Bisphenol A in Natural Waters by Means of an Optical Inmunosensor. Water Res 2005, 39, 5071–5079.
[92]  Endo, T.; Okuyama, A.; Matsubara, Y.; Nishi, K.; Kobayashi, M.; Yamamura, S.; Morita, Y.; Takamura, Y.; Mizukami, H.; Tamiya, E. Fluorescence-Based Assay with Enzyme Amplification on a Micro-Flow Immunosensor Chip for Monitoring Coplanar Polychlorinated Biphenyls. Anal. Chim. Acta 2005, 531, 7–13.
[93]  Zhen, S.; Wang, W.; Xiao, H.; Yuan, D.X. A Fluorescent Dosimeter for Formaldehyde Determination Using the Nash Reagent in Silica Gel Beads. Microchim. Acta 2007, 159, 305–310.
[94]  Mahugo Santana, C.; Sosa Ferrera, Z.; Torres Padrón, M.E.; Santana Rodríguez, J.J. Application of New Approaches to Liquid-Phase Microextraction for the Determination of Emerging Pollutants. Trends Anal. Chem 2011, 30, 731–748.
[95]  Traviesa Alvarez, J.M.; Costa Fernandez, J.M.; Pereiro, R.; Sanz Medel, A. Direct Screening of Tetracyclines on Water and Bovine Milk Using Room Temperature Phosphorescence Detection. Anal. Chim. Acta 2007, 589, 51–58.
[96]  Shen, L.M.; Chen, M.L.; Chen, X.W. A Novel Flow-Through Fluorescence Optosensor for the Sensitive Determination of Tetracycline. Talanta 2011, 85, 1285–1290.
[97]  Sui, B.; Shen, L.; Jin, W. Ultrasensitive Determination of 1,4-dihydroxybenzene Based on Fluorescence Resonance Energy Quenching of Luminescent Quantum Dots Modified on Surface of Silica Nanoparticles. Talanta 2011, 85, 1609–1613.
[98]  Sainz Gonzalo, F.J.; Medina Castillo, A.L.; Fernández Sánchez, J.F.; Fernández Gutiérrez, A. Synthesis and Characterization of a Molecularly Imprinted Polymer Optosensor for TEXS-Screening in Drinking Water. Biosen. Bioelectron 2011, 26, 3331–3338.
[99]  Sainz Gonzalo, F.J.; Fernández Sánchez, J.F.; Fernández Gutiérrez, A. The Development of a Screening Molecularly Imprinted Polymer Optosensor for Detecting Xylenes in Water Samples. Microchem. J 2011, 99, 278–282.
[100]  Valero Navarro, A.; Medina Castillo, A.L.; Fernández Sánchez, J.F.; Fernández Gutiérrez, A. Synthesis of a Novel Polyurethane-Based-Magnetic Imprinted Polymer for the Selective Optical Detection of 1-Naphthylamine in Drinking Water. Biosens. Bioelectron 2011, 26, 4520–4525.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133