全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Optimizing Two-Color Semiconductor Nanocrystal Immunoassays in Single Well Microtiter Plate Formats

DOI: 10.3390/s110807879

Keywords: quantum dot (QD), nanocrystal (NC), semiconductor, bioconjugation, sensor, multiplex, immunoassay, sulfhydryl chemistry

Full-Text   Cite this paper   Add to My Lib

Abstract:

The simultaneous detection of two analytes, chicken IgY (IgG) and Staphylococcal enterotoxin B (SEB), in the single well of a 96-well plate is demonstrated using luminescent semiconductor quantum dot nanocrystal (NC) tracers. The NC-labeled antibodies were prepared via sulfhydryl-reactive chemistry using a facile protocol that took

References

[1]  Sassolas, A; Blum, LJ; Leca-Bouvier, BD. Homogeneous assays using aptamers. Analyst 2011, 136, 257–274, doi:10.1039/c0an00281j. 20949139
[2]  Ge, Y; Turner, APF. Molecularly imprinted sorbent assays: Recent developments and applications. Chem. Eur. J 2009, 15, 8100–8107, doi:10.1002/chem.200802401. 19630010
[3]  Sapsford, KE; Berti, L; Medintz, IL. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed 2006, 45, 4562–4588, doi:10.1002/anie.200503873.
[4]  Haugland, RP. The Handbook: A Guide to Fluorescent Probes and Labeling Technologies; Invitrogen: San Diego, CA, USA, 2005.
[5]  Rousserie, G; Sukhanova, A; Even-Desrumeaux, K; Fleury, F; Chames, P; Baty, D; Oleinikov, V; Pluot, M; Cohen, JHM; Nabiev, I. Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays. Crit. Rev. Oncol. Hematol 2010, 74, 1–15, doi:10.1016/j.critrevonc.2009.04.006. 19467882
[6]  Algar, WR; Krull, UJ. New opportunities in multiplexed bioanalysis using quantum dots and donor-acceptor interactions. Anal. Bioanal. Chem 2010, 398, 2439–2449, doi:10.1007/s00216-010-3837-y. 20512564
[7]  Goldman, ER; Medintz, IL; Mattoussi, H. Luminescent quantum dots in immunoassays. Anal. Bioanal. Chem 2006, 384, 560–563, doi:10.1007/s00216-005-0212-5. 16344927
[8]  Goldman, ER; Clapp, AR; Anderson, GP; Uyeda, HT; Mauro, JM; Medintz, IL; Mattoussi, H. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem 2004, 76, 684–688, doi:10.1021/ac035083r. 14750863
[9]  Hu, M; Yan, J; He, Y; Lu, H; Weng, L; Song, S; Fan, C; Wang, L. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano 2010, 4, 488–494, doi:10.1021/nn901404h. 20041634
[10]  Zahavy, E; Heleg-Shabtai, V; Zafrani, Y; Marciano, D; Yitzhaki, S. Application of fluorescent nanocrystals (q-dots) for the detection of pathogenic bacteria by flow-cytometry. J. Fluoresc 2010, 20, 389–399, doi:10.1007/s10895-009-0546-z. 19826932
[11]  Zhang, Y; Zeng, Q; Sun, Y; Liu, X; Tu, L; Kong, X; Buma, WJ; Zhang, H. Multi-targeting single fiber-optic biosensor based on evanescent wave and quantum dots. Biosen. Bioelectron 2010, 26, 149–154, doi:10.1016/j.bios.2010.05.032.
[12]  Gilroy, KL; Cumming, SA; Pitt, AR. A simple, sensitive and selective quantum-dot-based western blot method for the simultaneous detection of multiple targets from cell lysates. Anal. Bioanal. Chem 2010, 398, 547–554, doi:10.1007/s00216-010-3908-0. 20582696
[13]  Liu, J; Lau, SK; Varma, VA; Kairdolf, BA; Nie, S. Multiplexed detection and characterization of rare tumor cells in Hodgkin’s lymphoma with multicolor quantum dots. Anal. Chem 2010, 82, 6237–6243, doi:10.1021/ac101065b. 20565106
[14]  Liu, J; Lau, SK; Varma, VA; Moffitt, RA; Caldwell, M; Liu, T; Young, AN; Petro, JA; Osunkoya, AO; Krogstad, T; Leyland-Jones, B; Wang, MD; Nie, S. Molecular mapping of tumor heterogeneity on clinical tissue specimens with multiplexed quantum dots. ACS Nano 2010, 4, 2755–2765, doi:10.1021/nn100213v. 20377268
[15]  Gei?ler, D; Charbonnière, LJ; Ziessel, RF; Butlin, NG; L?hmannsr?ben, H-G; Hilderbrandt, N. Quantum dot biosensors for ultrasensitive multiplexed diagnosis. Angew. Chem. Int. Ed 2010, 49, 1396–1401, doi:10.1002/anie.200906399.
[16]  Hermanson, GT. Bioconjugate Techniques; Academic Press: San Diego, CA, USA, 2008.
[17]  Medintz, I; Uyeda, HT; Goldman, ER; Mattoussi, H. Quantum dot bioconjugates for imaging, labeling and sensing. Nat. Mater 2005, 4, 435–446, doi:10.1038/nmat1390. 15928695
[18]  Medintz, I. Universal tools for biomolecular attachment to surfaces. Nat. Mater 2006, 5, 842–842, doi:10.1038/nmat1776. 17077841
[19]  Sapsford, KE; Pons, T; Medintz, IL; Higashiya, S; Brunel, FM; Dawson, PE; Mattoussi, H. Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe-ZnS quantum dots. J. Phys. Chem. C 2007, 111, 11528–11538, doi:10.1021/jp073550t.
[20]  Genin, E; Carion, O; Mahler, B; Dubertret, B; Arhel, N; Charneau, P; Doris, E; Mioskowski, C. CrAsH-quantum dot nanohybrids for smart targeting of proteins. J. Am. Chem. Soc 2008, 130, 8596–8597, doi:10.1021/ja802987q. 18549203
[21]  Han, HS; Devaraj, NK; Lee, J; Hilderbrand, SA; Weissleder, R; Bawendi, MG. Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine-norbornene cycloaddition. J. Am. Chem. Soc 2010, 132, 7838–7839, doi:10.1021/ja101677r. 20481508
[22]  Peng, ZA; Peng, X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc 2001, 123, 183–184, doi:10.1021/ja003633m. 11273619
[23]  Peng, ZA; Peng, XG. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc 2002, 124, 3343–3353, doi:10.1021/ja0173167. 11916419
[24]  Dubertret, B; Skourides, P; Norris, DJ; Noireaux, V; Brivanlou, AH; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762, doi:10.1126/science.1077194. 12459582
[25]  Sapsford, KE; Taitt, CR; Loo, N; Ligler, FS. Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl. Environ. Microbiol 2005, 71, 5590–5592, doi:10.1128/AEM.71.9.5590-5592.2005. 16151154
[26]  Maraldo, D; Mutharasan, R. Detection and confirmation of staphylococcal enterotoxin B in apple juice using piezoelectric-excited millimeter-size cantilever sensors at 2.5 fg/mL. Anal. Chem 2007, 79, 7636–7643, doi:10.1021/ac070589l. 17874846
[27]  Mulvaney, SP; Myers, KM; Sheehan, PE; Whitman, LJ. Attomolar protein detection in complex sample matrices with semi-homogeneous fluidic force discrimination assays. Biosens. Bioelectron 2009, 24, 1109–1115, doi:10.1016/j.bios.2008.06.010. 18656344
[28]  Sapsford, KE; Francis, J; Sun, S; Kostov, Y; Rasooly, A. Miniaturized 96-well ELISA chips for staphylococcal enterotoxin B detection using portable colorimetric detector. Anal. Bioanal. Chem 2009, 394, 499–505, doi:10.1007/s00216-009-2730-z. 19290511
[29]  Boyle, T; Njoroge, JM; Jones, RL; Principato, M. Detection of staphylococcal enterotoxin B in milk and milk products using immunodiagnostic lateral flow devices. J. AOAC Int 2010, 93, 569–575. 20480905
[30]  Yang, M; Sun, S; Kostov, Y; Rasooly, A. An automated point-of-care system for immunodetection of staphylococcal enterotoxin B. Anal. Biochem 2011, 416, 74–81, doi:10.1016/j.ab.2011.05.014. 21640067
[31]  Zhang, X; Liu, F; Yan, R; Xue, P; Li, Y; Chen, L; Song, C; Liu, C; Jin, B; Zhang, Z; Yang, K. An ultrasensitive immunosensor array for determination of staphylococcal enterotoxin B. Talanta 2011, 85, 1070–1074, doi:10.1016/j.talanta.2011.05.022. 21726740
[32]  Jennings, TL; Becker-Catania, SG; Triulzi, RC; Tao, G; Scott, B; Sapsford, KE; Spindel, S; Oh, E; Jain, V; Delehanty, JB; Prasuhn, DE; Boeneman, K; Algar, WR; Medintz, IL. Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis. ACS Nano 2011, 5, 5579–5593, doi:10.1021/nn201050g. 21692444
[33]  Algar, WR; Prasuhn, DE; Stewart, M; Jennings, TL; Blanco-Canosa, JB; Dawson, P; Medintz, IL. The controlled display of biomolecules on nanoparticles: A challenge suited to bioorthogonal chemistry. Bioconjugate Chem 2011, 22, 825–858, doi:10.1021/bc200065z.
[34]  Medintz, IL. Universal tools for biomolecular attachment to surfaces. Nat. Mater 2006, 5, 842, doi:10.1038/nmat1776. 17077841

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133