Besides the typical short-lived fluorescence with decay times in the nanosecond range, colloidal II/VI semiconductor nanoparticles dispersed in buffer also possess a long-lived fluorescence component with decay times in the microsecond range. Here, the signal intensity of the long-lived luminescence at microsecond range is shown to increase 1,000-fold for CdTe nanoparticles in PBS buffer. This long-lived fluorescence can be conveniently employed for time-gated fluorescence detection, which allows for improved signal-to-noise ratio and thus the use of low concentrations of nanoparticles. The detection principle is demonstrated with a time-resolved fluorescence immunoassay for the detection of C-reactive protein (CRP) using CdSe-ZnS nanoparticles and green light excitation.
References
[1]
H?nninen, P.; H?rm?, H. Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects. Springer Series on Fluorescence; Springer: Berlin, Germany, 2011. Volume 7.
[2]
Hemmila, I.; Mukkala, V.M. Time-resolution in fluorometry technologies, labels, and applications in bioanalytical assays. Critical reviews. Clin. Lab. Sci 2001, 38, 441–519, doi:10.1080/20014091084254.
[3]
Beverloo, H.B.; van Schadewijk, A.; van Gelderen-Boele, S.; Tanke, H.J. Inorganic phosphors as new luminescent labels for immunocytochemistry and time-resolved microscopy. Cytometry 1990, 11, 784–792, doi:10.1002/cyto.990110704. 2272243
[4]
H?rm?, H.; Soukka, T.; L?vgren, T. Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin. Chem 2001, 47, 561–568. 11238312
[5]
Gaponik, N.; Hickey, S.G.; Dorfs, D.; Rogach, A.L.; Eychmüller, A. Progress in the light emission of colloidal semiconductor nanocrystals. Small 2010, 6, 1364–1378, doi:10.1002/smll.200902006. 20564480
Dahan, M.; Laurence, T.; Pinaud, F.; Chemla, D.S.; Alivisatos, A.P.; Sauer, M.; Weiss, S. Time-gated biological imaging by use of colloidal quantum dots. Opt. Lett 2001, 26, 825–827, doi:10.1364/OL.26.000825. 18040463
[10]
Rossetti, R.; Brus, L. Electron-hole recombination emission as a probe of surface-chemistry in aqueous CdS colloids. J. Phys. Chem 1982, 86, 4470–4472, doi:10.1021/j100220a003.
[11]
Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strog luminescing CdS particles. J. Am. Chem. Soc 1987, 109, 5649–5655, doi:10.1021/ja00253a015.
[12]
Aldana, J.; Wang, Y.A.; Peng, X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc 2001, 123, 8844–8850, doi:10.1021/ja016424q. 11535092
[13]
Volkov, Y.; Mitchell, S.; Gaponik, N.; Rakovich, Y.P.; Donegan, J.F.; Kelleher, D.; Rogach, A.L. In-situ observation of nanowire growth from luminescent CdTe nanocrystals in a phosphate buffer solution. Chemphyschem 2004, 5, 1600–1602, doi:10.1002/cphc.200400330. 15535561
[14]
Pellegrino, T.; Kudera, S.; Liedl, T.; Mu?oz Javier, A.; Manna, L.; Parak, W.J. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small 2005, 1, 48–63. 17193348