全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

On the Biomimetic Design of Agile-Robot Legs

DOI: 10.3390/s111211305

Keywords: legged robots, agile quadrupeds, biomimetic design, new actuators for robots

Full-Text   Cite this paper   Add to My Lib

Abstract:

The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented.

References

[1]  Bar-Cohen, Y.; Hanson, D. The Coming Robot Revolution; Springer: Berlin/Heidelberg, Germany, 2009.
[2]  Jackel, L.; Hackett, D.; Krotkov, E.; Perschbacher, M.; Pippine, J.; Sullivan, C. How DARPA structures its robotics programs to improve locomotion and navigation. Commun. ACM 2007, 50, 55–59.
[3]  Pippine, J.; Hackett, D.; Watson, A. An overview of the defense advanced research projects agency’s learning locomotion program. Int. J. Robot. Res 2011, 30, 141–144, doi:10.1177/0278364910387681.
[4]  Raibert, M.; Blankespoor, K.; Nelson, G.; Playter, R. BigDog, the Rough-Terrain Quadruped Robot. Proceedings of the 17th IFAC World Congress, Seoul, South Korea, 6–11 July 2008.
[5]  Garcia, E.; Sater, J.M.; Main, J. Exoskeletons for human performance augmentation (EHPA): A program summary. J. Robot. Soc. Jpn 2002, 20, 44–48.
[6]  Holste, S.T.; Ciccimaro, D.A.; Dudenhoeffer, D.D. Increasing the Mobility of Dismounted Marines. Small Unit Mobility Enhancement Technologies: Unmanned Ground Vehicles Market Survey. Final Report No. ADA513828;; Pace and Naval Warfare Systems Center Pacific: San Diego, CA, USA, 2009.
[7]  Garcia, E.; Jimenez, M.; Gonzalez de Santos, P.; Armada, M. The evolution of robotics research: From industrial robotics to field and service robotics. IEEE Robot. Autom. Mag 2007, 14, 90–103, doi:10.1109/MRA.2007.339608.
[8]  Garcia, E. The HADE project. 2007. Available online: http://www.iai.csic.es/users/egarcia/hade.html (accessed on 7 November 2011).
[9]  Carbone, G.; Ceccarelli, M. Legged Robotic Systems. In Cutting Edge Robotics; ARS Scientific Book: Wien, Austria, 2005; pp. 553–576.
[10]  Poulakakis, I.; Smith, J.A.; Buehler, M. Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot. Int. J. Robot. Res 2005, 24, 239–256, doi:10.1177/0278364904050917.
[11]  Gonzalez de Santos, P.; Galvez, J.; Estremera, J.; Garcia, E. SILO4—A true walking robot for the comparative study of walking machine techniques. IEEE Robot. Autom. Mag 2003, 10, 23–32, doi:10.1109/MRA.2003.1256295.
[12]  Hodoshima, R.; Doi, T.; Fukuda, Y.; Hirose, S.; Okamoto, T.; Mori, J. Development of a quadruped walking robot TITAN XI for steep slope operation—Step over gait to avoid concrete frames on steep slopes. J. Robot. Mechatron 2007, 19, 13–26.
[13]  Kimura, H.; Fukuoka, Y.; Cohen, A. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int. J. Robot. Res 2007, 26, 475–490, doi:10.1177/0278364907078089.
[14]  Greenemeier, L. DARPA Pushes Machine Learning with Legged LittleDog Robot. Scientific American 2008.
[15]  Fukuoka, Y.; Katabuchi, H.; Kimura, H. Dynamic locomotion of quadrupeds “Tekken3&4” using simple navigation system. J. Robot. Mechatron 2010, 22, 36–42.
[16]  Singh, S.P.N.; Waldron, K.J. Towards HighFidelity OnBoard Attitude Estimation for Legged Locomotion via a Hybrid Range and Inertial Approach. In Springer Tracts in Advanced Robotics: Experimaental Robots IX; Siciliano, B., Khatib, O., Groen, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 589–598.
[17]  Zhang, Z.G.; Kimura, H. Rush: A simple and autonomous quadruped running robot. J. Syst. Control Eng 2009, 223, 323–336.
[18]  Alexander, R.M.; Jayes, A.S. A dynamic similarity hypothesis for the gaits of quadrupedal mammals. J. Zool 1983, 201, 135–152.
[19]  Thornhill, L.D.; Walls, A.; Arkin, R.C.; Beno, J.H.; Bergh, C.; Bresie, D.; Giovannetti, A.; Gothard, B.M.; Matthies, L.H.; Nogueiro, P.; et al. Design of an Agile Unmanned Combat Vehicle—A Product of the DARPA UGCV Program. In Unmanned Ground Vehicle Technology V; Gerhart, GR, Shoemaker, CM, Gage, DW, Eds.; SPIE: Bellingham, WA, USA, 2003. Volume 5083; pp. 258–270.
[20]  Waldron, K.; Nichol, J. Architectural Issues in Running Machines. Proceedings of ROMANSY 15, Montreal, QC, Canada, 14–17 June 2004.
[21]  Griffin, T.M.; Kram, R.; Wickler, S.J.; Hoyt, D.F. Biomechanical and energetic determinants of the walk-trot transition in horses. J. Exp. Biol 2004, 207, 4215–4223, doi:10.1242/jeb.01277. 15531642
[22]  Estremera, J.; Waldron, K. Thrust control, stabilization and energetics of a quadruped running robot. Int. J. Robot. Res 2008, 27, 1135–1151, doi:10.1177/0278364908097063.
[23]  Semini, C. HyQ—Design and Development of a Hydraulically Actuated Quadruped RobotPh.D. Thesis. Italian Institute of Technology and University of Genoa, Genoa, Italy, 2010.
[24]  Dickinson, M.; Farley, C.; Full, R.; Koehl, M.; Kram, R.; Lehman, S. How animals move: An integrative view. Science 2000, 288, 100–106, doi:10.1126/science.288.5463.100. 10753108
[25]  Ham, R.V.; Sugar, T.G.; Vanderborght, B.; Hollander, K.W.; Lefeber, D. Compliant actuator designs. IEEE Robot. Autom. Mag 2009, 16, 81–94, doi:10.1109/MRA.2009.933629.
[26]  Garcia, E.; Montes, H.; Gonzalez de Santos, P. Emerging Actuators for Agile Locomotion. Proceedings of the 12th International Conference on Climbing and Walking Robots, Istanbul, Turkey, 9–11 September 2009.
[27]  Pestana, J.; Bombin, R.; Arevalo, J.C.; Garcia, E. Characterization of Emerging Actuators for Empowering Legged Robots. Proceedings of the 13th International Conference on Climbing and Walking Robots, Nagoya, Japan, 31 August–3 September 2010.
[28]  Hildebrand, M. The mechanics of horse legs. Am. Sci 1987, 75, 594–601.
[29]  Nauwelaerts, S.; Allen, W.A.; Lane, J.M.; Clayton, H.M. Inertial properties of equine limb segments. J. Anat 2011, 218, 500–509, doi:10.1111/j.1469-7580.2011.01353.x. 21355866
[30]  Bar-Cohen, Y.; Breazeal, C. Biologically Inspired Intelligent Robots; SPIE Press: Bellingham, WA, USA, 2003.
[31]  Pontzer, H. Effective limb length and the scaling of locomotor cost in terrestrial animals. J. Exp. Biol 2007, 210, 1752–1761, doi:10.1242/jeb.002246. 17488938
[32]  American Institute of Architects. Architectural Graphic Standards (Version 3); John Wiley and Sons, Inc: Hoboken, NJ, USA, 2000.
[33]  Gunn, H. Morphological Attributes Associated with Speed of Running in Horses. In Equine Exercise Physiology; Snow, D, Persson, S, Rose, R, Eds.; Burlington Press: Cambridge, MA, USA, 1983; pp. 271–274.
[34]  Alexander, R.M. Elastic Mechanisms in Animal Movement; Cambridge University Press: Cambridge, UK, 1988.
[35]  Rapoport, S.; Mizrahi, J.; Kimmel, E.; Verbitsky, O.; Isakov, E. Constant and variable stiffness and damping of the leg joints in human hopping. J. Biomech. Eng 2003, 125, 507–514, doi:10.1115/1.1590358. 12968575
[36]  Buchner, H.H.F.; Savelberg, H.H.C.M.; Schamhardt, H.C.; Barneveld, A. Inertial properties of Dutch Warmblood horses. J. Biomech 1997, 30, 653–658, doi:10.1016/S0021-9290(97)00005-5. 9165402
[37]  Yobotics! Simulation Construction Set: Users Guide; Yobotics, Inc.: Boston, MA, USA, 2006. Available online: http://www.yobotics.com/ (accessed on 7 November 2011).
[38]  Garcia, E.; Arevalo, J.; Mu?oz, G.; Gonzalez-de-Santos, P. Combining series-elastic actuation and magneto-rheological damping for the control of agile locomotion. Robot. Auton. Syst 2011, 59, 827–839, doi:10.1016/j.robot.2011.06.006.
[39]  Rooney, J.R. The jump behavior of the humeroradial and tarsocrural joints of the horse. J. Equine Vet. Sci 1990, 10, 311–314, doi:10.1016/S0737-0806(06)80017-1.
[40]  Pratt, J.; Krupp, B.; Morse, C. Series elastic actuators for high fidelity force control. Ind. Robot Int. J 2002, 29, 234–241, doi:10.1108/01439910210425522.
[41]  Garcia, E.; Gonzalez de Santos, P. Biomimetic Design and Control of a Robotic Leg for Agile Locomotion. Proceedings of the 12th International Conference on Climbing and Walking Robots, Istanbul, Turkey, 9–11 September 2009.
[42]  Carlson, D.; Catanzarite, D.; St. Clair, K. Commercial Magneto-Rheological Fluid Devices. Proceedings of the 9th International Conference on New Actuators (ACTUATOR 2004), Bremen, Germany, 14–16 June 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133