全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Robust Automatic Focus Algorithm for Low Contrast Images Using a New Contrast Measure

DOI: 10.3390/s110908281

Keywords: auto-focus, low contrast, contrast measure, noise reduction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Low contrast images, suffering from a lack of sharpness, are easily influenced by noise. As a result, many local false peaks may be generated in contrast measurements, making it difficult for the camera’s passive auto-focus system to perform its function of locating the focused peak. In this paper, a new passive auto-focus algorithm is proposed to address this problem. First, a noise reduction preprocessing is introduced to make our algorithm robust to both additive noise and multiplicative noise. Then, a new contrast measure is presented to bring in local false peaks, ensuring the presence of a well defined focused peak. In order to gauge the performance of our algorithm, a modified peak search algorithm is used in the experiments. The experimental results from an actual digital camera validate the effectiveness of our proposed algorithm.

References

[1]  Li, J. Autofocus searching algorithm considering human visual system limitations. Opt. Eng 2005, 44, 113201, doi:10.1117/1.2130725.
[2]  Ni, J; Wei, M; Yuan, J; Wu, Q. Efficient auto-focus algorithm for optical measurement system. Proc. SPIE 2009, 7283, 728344.
[3]  Gamadia, M; Kehtarnavaz, N; Roberts-Hoffman, K. Low-light auto-focus enhancement for digital and cell-phone camera image pipelines. IEEE Trans. Consum. Electron 2007, 53, 249–257, doi:10.1109/TCE.2007.381682.
[4]  Shih, L. Autofocus survey: A comparison of algorithms. Proc. SPIE 2007, 6502, 65020B.
[5]  Kehtarnavaz, N; Oh, HJ. Development and real-time implementation of a rule-based auto-focus algorithm. Real Time Imag 2003, 9, 197–203, doi:10.1016/S1077-2014(03)00037-8.
[6]  Groen, FCA; Young, IT; Ligthart, G. A comparison of different autofocus algorithms. Cytometry 1985, 6, 81–91, doi:10.1002/cyto.990060202. 3979220
[7]  Peddigari, V; Gamadia, M; Kehtarnavaz, N. Real-time implementation issues in passive automatic focusing for digital still cameras. J. Imag. Sci. Technol 2005, 49, 114–123.
[8]  Chern, NK; Neow, PA; Ang, MH, Jr. Practical Issues in Pixel-Based Autofocusing for Machine Vision. Proceedings of IEEE International Conference on Robotics and Automation, Seoul, Korea, 21–26 May 2001; pp. 2791–2796.
[9]  Tenenbaum, JM. Accommodation in Computer VisionPhD Thesis. Stanford University, Stanford, CA, USA, 1970.
[10]  Schlag, JF; Sanderson, AC; Neumann, CP; Wimberly, FC. Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control. Technical Report CMU-RI-TR-83-14;; Carnegie Mellon University: Pittsburgh, PA, USA, 1983.
[11]  Krotkov, E. Focusing. Int. J. Comput. Vision 1987, 1, 223–237.
[12]  Baina, J; Dublet, J. Automatic Focus and Iris Control for Cameras. Proceedings of IEEE Fifth International Conference on Image Processing and Its Applications, Edinburgh, UK, 4–6 July 1995; pp. 232–235.
[13]  Shen, CH; Chen, HH. Robust focus measure for low-contrast images. Proceedings of IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 7–11 January 2006.
[14]  Lee, ME; Chen, CF; Lin, TN; Chen, CN. The application of discrete cosine transform (DCT) combined with the nonlinear regression routine on optical auto-focusing. Proceedings of IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 10–14 January 2009.
[15]  Kristan, M; Pers, J; Perse, M; Kovacic, S. A Bayes-spectral-entropy-based measure of camera focus using a discrete cosine transform. Patt. Recogn. Lett 2006, 27, 1431–1439, doi:10.1016/j.patrec.2006.01.016.
[16]  Lee, SY; Yoo, JT; Kumar, Y; Kim, SW. Reduced energy-ratio measure for robust autofocusing in digital camera. IEEE Sign. Process. Lett 2009, 16, 133–136, doi:10.1109/LSP.2008.2008938.
[17]  Luo, Y; Ward, RK. Removing the blocking artifacts of block-based DCT compressed images. IEEE Trans. Image Process 2003, 12, 838–842, doi:10.1109/TIP.2003.814252. 18237958
[18]  Lin, KC. Microscopic autofocusing using regional monotonous variations of multiple focal value measures. J. Electron. Imag 2010, 19, 023012, doi:10.1117/1.3429726.
[19]  Advantages of Power Leds in Cameraphone Applications; Philips Lumileds Lighting Company: San Jose, CA, USA, 2006.
[20]  Gotanda, Y. Image Capturing Apparatus and Method for Setting Exposure for AF Control Executed by Image Capturing ApparatusUS Patent 7321395. 22, January, 2008.
[21]  Lim, SK. Characterization of noise in digital photographs for image processing. Proc. SPIE 2006, 6069, 219–228.
[22]  Tang, J; Xu, X. An automatic focus algorithm for still and video camera applications using a new contrast measure. Proc. SPIE 2009, 7498, 74984X.
[23]  Gonzales, R; Woods, R. Digital Image Processing; Prentice-Hall: Saddle River, NJ, USA, 2002.
[24]  Bose, T. Digital Signal and Image Processing; John Wiley & Sons: Hoboken, NJ, USA, 2004.
[25]  Phelippeau, H; Talbot, H; Akil, M; Bara, S. Shot Noise Adaptive Bilateral Filter. Proceedings of the 9th International Conference on Signal Processing, Beijing, China, 26–29 October 2008; pp. 864–867.
[26]  Barash, D. Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Trans. Patt. Anal. Mach. Intell 2002, 24, 844–847, doi:10.1109/TPAMI.2002.1008390.
[27]  Tomasi, C; Manduchi, R. Bilateral filtering for gray and color images. Proceedings of International Conference on Computer Vision, Bombay, India, 4–7 January 1998; pp. 839–846.
[28]  Yu, Y; Acton, ST. Speckle reducing anisotropic diffusion. IEEE Trans. Image Process 2002, 11, 1260–1270, doi:10.1109/TIP.2002.804276. 18249696
[29]  Sun, Q; Hossack, J; Tang, J; Acton, ST. Speckle reducing anisotropic diffusion for 3D ultrasound images. Comput. Med. Imag. Graph 2004, 28, 461–470.
[30]  Wachowiak, S; Smolikova, R; Zurada, J; Elmaghraby, A. A neural approach to speckle noise modeling. Intell. Eng. Syst. Artif. Neural Netw 2000, 10, 837–842.
[31]  Tang, J; Guo, S; Sun, Q; Deng, Y; Zhou, D. Speckle reducing bilateral filter for cattle follicle segmentation. BMC Genomics 2010, 11, doi:10.1186/1471-2164-11-S2-S9.
[32]  Apostol, TM. Mathematical Analysis; Addison-Wesley: Reading, MA, USA, 2004.
[33]  He, J; Zhou, R; Hong, Z. Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera. IEEE Trans. Consum. Electron 2003, 49, 257–262, doi:10.1109/TCE.2003.1209511.
[34]  Jin, S; Cho, J; Kwon, KH; Jeon, JW. A dedicated hardware architecture for real-time auto-focusing using an FPGA. Mach. Vision Appl 2010, 21, 727–734, doi:10.1007/s00138-009-0190-2.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133