Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps) in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps.
References
[1]
Alkemade, UG; Schumann, B. Engines and exhaust after treatment systems for future automotive applications. Solid State Ionics 2006, 177, 2291–2296, doi:10.1016/j.ssi.2006.05.051.
[2]
Gabrielsson, PLT. Urea-SCR in automotive applications. Topics in Catalysis 2004, 28, 177–184, doi:10.1023/B:TOCA.0000024348.34477.4c.
[3]
Takeuchi, M; Matsumoto, S. NOx storage-reduction catalysts for gasoline engines. Topics Catal 2004, 28, 151–156, doi:10.1023/B:TOCA.0000024344.91688.e4.
[4]
Ka?par, J; Fornasiero, P; Hickey, N. Automotive catalytic converters: current status and some perspectives. Catal. Today 2003, 77, 419–449, doi:10.1016/S0920-5861(02)00384-X.
[5]
Baik, JH; Yim, SD; Nam, I-S; Mok, YS; Lee, J-H; Cho, BK; Oh, SH. Control of NOx emissions from diesel engine by selective catalytic reduction (SCR) with urea. Topics Catal 2004, 30–31, 37–41.
[6]
Weibel, M; Waldbü?er, N; Wunsch, R; Chatterjee, D; Bandl-Konrad, B; Krutzsch, B. A Novel Approach to Catalysis for NOx Reduction in Diesel Exhaust Gas. Topics Catal 2009, 52, 1702–1708, doi:10.1007/s11244-009-9329-7.
[7]
Dawody, J; Skoglundh, M; Wall, S; Fridell, E. Role of Pt-precursor on the performance of Pt/BaCO3/Al2O3?NOx storage catalysts. J. Molecul. Catal. A: Chem 2005, 225, 259–269, doi:10.1016/j.molcata.2004.09.011.
[8]
Nova, I; Castoldi, L; Lietti, L; Tronconi, E; Forzatti, P; Prinetto, F; Ghiotti, G. NOx adsorption study over Pt-Ba/alumina catalysts: FT-IR and pulse experiments. J. Catal 2004, 222, 377–388, doi:10.1016/j.jcat.2003.11.013.
[9]
Roy, S; Baiker, A. NOx Storage catalysis: From mechanism und materials properties to storage-reduction performance. Chem. Rev 2009, 109, 4054–4091, doi:10.1021/cr800496f. 19456148
[10]
Epling, WS; Campbell, LE; Yezerets, A; Currier, NW; Parks, JE. Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction Catalysts. Catal. Rev 2004, 6, 163–245.
[11]
Hertzberg, A. Betriebsstrategien für einen Ottomotor mit Direkteinspritzung und NOx-Speicher-Katalysator. (in German), Ph.D. Thesis, Universit?t Karlsruhe, Karlsruhe, Germany; 2001.
[12]
Zhuiykov, S; Miura, N. Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: What are the prospects for sensors? Sens. Actuat. B: Chem 2007, 121, 639–651, doi:10.1016/j.snb.2006.03.044.
[13]
Fergus, JW. Materials for high temperature electrochemical NOx gas sensors. Sens. Actuat. B: Chem 2007, 121, 652–663, doi:10.1016/j.snb.2006.04.077.
[14]
Moos, R. Catalysts as sensors—A promising novel approach in automotive exhaust gas aftertreatment. Sensors 2010, 10, 6773–6787, doi:10.3390/s100706773. 22163575
[15]
Kato, N; Kokune, N; Lemire, B; Walde, T. . Technical Paper 1999-01-0202; SAE International: Warrendale, PA, USA, 1999.
[16]
Sasaki, H; Scholl, D; Parsons, M; Inagaki, H; Shiotani, K; Visser, J; Zawacki, G; Kawai, T; Teramoto, S; Kubinski, D. . Technical Paper 2010-01-0041; SAE International: Warrendale, PA, USA, 2010.
[17]
Moos, R; Wedemann, M; Sp?rl, M; Rei?, S; Fischerauer, G. Direct Catalyst Monitoring by Electrical Means: An Overview on Promising Novel Principles. Topics Catal 2009, 52, 2035–2040, doi:10.1007/s11244-009-9399-6.
[18]
Moos, R; Zimmermann, C; Birkhofer, T; Knezevic, A; Plog, C; Busch, MR; Ried, T. Sensor for directly determining the state of a NOx storage catalyst. Technical Paper 2008-01-0447; SAE International: Warrendale, PA, USA, 2008.
[19]
Zimmermann, C. Neuartiger Sensor zur Bestimmung des Zustandes eines NOx-Speicherkatalysators. (in German); Moos, R, Fischerauer, G, Eds.;. Bayreuther Beitr?ge zur Sensorik und Messtechnik Shaker-Verlag: Aachen, Germany, 2007; Volume 2.
[20]
Rei?, S; Sp?rl, M; Hagen, G; Fischerauer, G; Moos, R. Combination of wirebound and microwave measurements for in-situ characterization of automotive three-way catalysts. IEEE Sensors J 2011, 11, 434–438, doi:10.1109/JSEN.2010.2058798.
[21]
Fischerauer, G; F?rster, M; Moos, R. Sensing the soot load in automotive diesel particulate filters by microwave methods. Meas. Sci. Tech 2010, 21, 035108, doi:10.1088/0957-0233/21/3/035108.
[22]
Fischerauer, G; Sp?rl, M; Rei?, S; Moos, R. Mikrowellengestützte Aufkl?rung elektrochemischer Vorg?nge in Katalysatoren und verwandten Systemen (In German). Technisches Messen 2010, 77, 419–427, doi:10.1524/teme.2010.0066.
[23]
Rei?, S; Sch?nauer, D; Hagen, G; Fischerauer, G; Moos, R. Monitoring the ammonia loading of zeolite-based ammonia SCR catalysts by a microwave method. Chem. Eng. Tech 2011, 34, 791–796, doi:10.1002/ceat.201000546.
[24]
Kubinski, DJ; Visser, JH. Sensor and method for determining the ammonia loading of a zeolite SCR catalyst. Sens. Actuat. B: Chem 2008, 130, 425–429, doi:10.1016/j.snb.2007.09.007.
[25]
Barochi, G; Rossignol, J; Bouvet, M. Development of microwave gas sensors. Sens. Actuat. B: Chem 2011, 157, 374–379, doi:10.1016/j.snb.2011.04.059.
[26]
Chao, SH. Measurements of microwave conductivity and dielectric constant by the cavity perturbation method and their errors. IEEE Trans. Microwave Theory Tech 1985, 33, 519–526, doi:10.1109/TMTT.1985.1133108.
[27]
Riegel, J; Neumann, H; Wiedenmann, HM. Exhaust Gas Sensors for Automotive Emission Control. Solid State Ionics 2002, 152–153, 783–800.
[28]
Fischerauer, G; Sp?rl, M; Gollwitzer, A; Wedemann, M; Moos, R. Catalyst State Observation via the Perturbation of a Microwave Cavity Resonator. Frequenz 2008, 62, 180–184.
[29]
Geupel, A; Sch?nauer, D; R?der-Roith, U; Kubinski, DJ; Mulla, S; Ballinger, TH; Chen, H-Y; Visser, JH; Moos, R. Integrating nitrogen oxide sensor: A novel concept for measuring low concentrations in the exhaust gas. Sens. Actuat. B: Chem 2010, 145, 756–761, doi:10.1016/j.snb.2010.01.036.
[30]
Sch?nauer, D; Moos, R. Detection of water droplets on exhaust gas sensors. Sens. Actuat. B: Chem 2010, 148, 624–629, doi:10.1016/j.snb.2010.05.060.
[31]
Rettig, F; Wickles, M; Kita, J; Moos, R. Anwendbarkeit von kommerziellen LTCC-Materialien für Gassensoren. cfi/Ber. DKG 2005, 82, 197–200.
[32]
Rodrigues, F; Juste, L; Potvin, C; Tempère, JF; Blanchard, G; Djèga-Mariadassou, G. NOx storage on barium-containing three-way catalyst in the presence of CO2. Catal. Lett 2001, 72, 59–64, doi:10.1023/A:1009001630673.
[33]
AL-Harbi, M; Epling, WS. Investigating the Effect of NO Versus NO2 on the Performance of a Model NOx Storage/Reduction Catalyst. Catal. Lett 2009, 130, 121–129, doi:10.1007/s10562-009-9912-3.
[34]
Geupel, A; Kubinski, DJ; Mulla, S; Ballinger, TH; Chen, H-Y; Visser, JH; Moos, R. Integrating NOx Sensor for Automotive Exhausts—A Novel Concept. Sensor Lett 2011, 9, 311–315, doi:10.1166/sl.2011.1471.
[35]
Rei?, S; Wedemann, M; Sp?rl, M; Fischerauer, G; Moos, R. Effects of H2O, CO2, CO, and flow rates on the RF-based monitoring of three-way catalysts. Sensor Lett 2011, 9, 316–320, doi:10.1166/sl.2011.1472.
[36]
Tamaki, J; Fujimori, K; Miura, N; Yamazoe, N. Sensing characteristics of semiconductor barium carbonate sensor to nitrogen oxides at elevated temperature. Proceedings of the Second East Asia Conference on Chemical Sensors, Xi’an, China, 5–8 October 1995; pp. 81–84.
[37]
Rei?, S; Wedemann, M; Moos, R; R?sch, M. Electrical in-situ characterization of three-way catalyst coatings. Topics Catal 2009, 52, 1898–1902, doi:10.1007/s11244-009-9366-2.
[38]
Izu, N; Oh-hori, N; Shin, W; Matsubara, I; Murayama, N; Itou, M. Response of resistive oxygen sensors using Ce1-xZrxO2 (x = 0.05, 0.10) thick films in propane combustion gas. Sens. Actuat. B: Chem 2008, 130, 105–109, doi:10.1016/j.snb.2007.07.093.
[39]
Williams, DE. Semiconducting oxides as gas-sensitive resistors. Sens. Actuat. B: Chem 1999, 57, 1–16, doi:10.1016/S0925-4005(99)00133-1.
[40]
Twigg, MV; Phillips, PR. Cleaning the air we breathe—Controlling diesel particulate emissions from passenger cars. Platinum Metals Rev 2009, 53, 27–34, doi:10.1595/147106709X390977.
[41]
Ochs, T; Schittenhelm, H; Genssle, A; Kamp, B. Particulate Matter Sensor for on Board Diagnostics (OBD) of Diesel Particulate Filters (DPF). Technical Paper 2010-01-0307; SAE International: Warrendale, PA, USA, 2010.
Kr?cher, O; Devadas, M; Elsener, M; Wokaun, A; S?ger, N; Pfeifer, M; Demel, Y; Mussmann, L. Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith catalysts. Appl. Catal. B: Environ 2006, 66, 208–216, doi:10.1016/j.apcatb.2006.03.012.
[44]
Simon, U; Flesch, U; Maunz, W; Müller, R; Plog, C. The effect of NH3 on the ionic conductivity of dehydrated zeolites Na beta and H beta. Microporous Mesoporous Mater 1998, 21, 111–116, doi:10.1016/S1387-1811(97)00056-5.
[45]
Franke, M; Simon, U; Moos, R; Knezevic, A; Müller, R; Plog, C. Development and working principle of an ammonia gas sensor based on a refined model for solvate supported proton transport in zeolites. Phys. Chem. Chem. Phys 2003, 5, 5195–5198, doi:10.1039/b307502h.