The pyrethroid insecticide cypermethrin is used for agricultural and public health campaigns. Its residues may contaminate soils and the beneficial soil organisms, like the earthworms, that may ingest the contaminated soil particles. Due to its ecological relevance, earthworms Eisenia andrei/fetida have been used in different ecotoxicological tests. The avoidance of soils treated with cypermethrin by compost worms Eisenia andrei was studied here as a bioindicator of the influence of treatment dosage and the pesticide formulation in three different agricultural soils indicated by the Brazilian environmental authorities for ecotoxicological tests. This earthworms’ behavior was studied here as a first attempt to propose the test for regulation purposes. The two-compartment test systems, where the earthworms were placed for a two-day exposure period, contained samples of untreated soil alone or together with soil treated with technical grade or wettable powder formulation of cypermethrin. After 48 h, there was no mortality, but the avoidance was clear because all earthworms were found in the untreated section of each type of soil (p < 0.05). No differences were found by the Fisher’s exact test (p ≤ 1.000) for each soil and treatment, demonstrating that the different soil characteristics, the cypermethrin concentrations and formulation, as well as the smaller amounts of soil and earthworms did not influence the avoidance behavior of the earthworms to cypermethrin. The number and range of treatments used in this study do not allow a detailed recommendation of the conditions applied here, but to the best of our knowledge, this is the first reported attempt to identify the avoidance of pesticide treated tropical soils by earthworms.
References
[1]
Spadotto, C.A.; Gomes, M.A.F.; Luchini, L.C.; Andréa, M.M. Monitoramento do Risco Ambiental de Agrotóxicos: Princípios e Recomenda??es; Embrapa Meio Ambiente: Jaguariúna, Brazil, 2004.
[2]
Gupta, R.D.; Chakravorty, P.P.; Kaviraj, A. Susceptibility of epigeic earthworm Eisenia fetida to agricultural application of six insecticides. Chemosphere 2011, 84, 724–726.
[3]
Wild, A. Soils and the Environment: An Introduction; Cambridge University Press: Cambridge, UK, 1993; p. 287.
[4]
Ingham, E.R. The Soil Biology Primer, Available online: http://soils.usda.gov/sqi/concepts/soil_biology/fw&soilhealth.html (accessed on 11 October 2011).
[5]
Vasseur, P.; Cossu-Leguille, C. Linking molecular interactions to consequent effects of persistent organic pollutants (POPs) upon populations. Chemosphere 2006, 62, 1033–1042.
[6]
Andréa, M.M. O uso de minhocas como bioindicadores de contamina??o de solos. Acta Zoológica Mexicana (nueva serie) 2010, 26, 95–107.
[7]
Yasmin, S.; D’Souza, D. Effects of pesticides on the growth and reproduction of earthworm: A review. Appl. Environ. Soil Sci 2010, 2010, 678360:1–678360:9.
[8]
Eijsachers, H. Earthworms in environmental research. In Earthworm Ecology, 2nd ed; Edwards, C.A., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 321–342.
[9]
Ribera, D.; Narbonne, J.F.; Arnaud, C.; Saint-Denis, M. Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil, effects of carbaryl. Soil Biol. Biochem 2001, 33, 1123–1130.
[10]
Reinecke, A.J.; Reinecke, S.A. Earthworms as test organisms in ecotoxicological assessment of toxicant impacts on ecosystems. In Earthworm Ecology, 2nd ed; Edwards, C.A., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 299–320.
[11]
Souza, A.; Pereira, R.; Antunes, S.C.; Cachada, A.; Pereira, E.; Duarte, A.C.; Gon?alves, F. Validation of avoidance assays for the screening assessment of soils under different anthropogenic disturbances. Ecotoxicol. Environ. Saf 2008, 71, 661–670.
Yeardley, R.B., Jr.; Lazorchak, J.M.; Gast, L.C. The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environ. Toxicol. Chem 1996, 15, 1532–1537.
[14]
Schaefer, M. Behavioural endpoints in earthworm ecotoxicology. Evaluation of different test systems in soil toxicity assessment. J. Soil Sediment 2003, 3, 79–84.
[15]
Amorim, M.J.B.; R?mbke, J.; Soares, A.M.V.M. Avoidance behaviour of Enchytraeus albidus: Effects of benomyl, carbendazim, phnmedipham and different soil types. Chemosphere 2005, 59, 501–510.
[16]
Bioaccumulation in Terrestrial Oligochaetes. OECD Guideline N° 317;; Organization for Economic Co-operation and Development (OECD): Paris, France, 2010; p. 30.
[17]
Earthworm, Acute Toxicity Tests. OECD Guideline N° 207;; Organization for Economic Co-operation and Development (OECD): Paris, France, 1984; p. 9.
[18]
Soil Quality—Avoidance Test for Determining the Quality of Soils and Effects of Chemicals on Behaviour—Part 1: Test with Earthworms (Eisenia fetida and Eisenia andrei). ISO Guideline N° 17512-1;; International Organization for Standardization (ISO): Geneva, Switzerland, 2008; p. 32.
[19]
van Gestel, C.A.M.; Weeks, J.M. Recommendations of the 3rd international workshop on earthworm ecotoxicology, Aarhus, Denmark, August 2001. Ecotoxicol. Environ. Saf 2004, 57, 100–105.
[20]
Qualidade do Solo—Ensaio de Fuga Para Avaliar a Qualidade de Solos e Efeitos de Substancias Químicas No Comportamento. ABNT NBR ISO-17512-1;; Associa??o Brasileira de Normas Técnicas (ABNT): S?o Paulo, Brazil, 2011; p. 26.
[21]
Portaria Normativa IBAMA N° 84, DE 15 DE OUTUBRO DE; Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA): Brasília, Brazil, 1996; p. 2.
[22]
de Silva, P.M.C.S.; Pathiratne, A.; van Gestel, C.A.M. Influence of temperature and soil type on the toxicity of three pesticides to Eisenia andrei. Chemosphere 2000, 76, 1410–1415.
Natal-da-Luz, T.; Amorim, M.J.B.; R?mbke, J.; Sousa, J.P. Avoidance tests with earthworms and springtails: Defining the minimum exposure time to observe a significant response. Ecotoxicol. Environ. Saf 2008, 71, 545–551.
[25]
Zhou, S.; Duan, C.; Wang, X.; Wong, H.G.M.; Yu, Z.; Fu, H. Assessing cypermethrin contaminated soil with three different earthworm test methods. J. Environ. Sci 2008, 20, 1381–1385.
[26]
National Pesticide Information Center (NPIC). 1.800.858.7378. Available online: http://npic.orst.edu/factsheets/cypermethrin.pdf (accessed on 11 October 2011).
[27]
Worthing, C.R.; Hance, R.J. The Pesticide Manual, 9th ed; Surrey, R.U., Ed.; British Crop Protection Council: Hampshire, UK, 1991; pp. 208–209.
[28]
Pesticide Information Profiles, Extension Toxicology Network (EXTOXNET). Cypermethrin, Available online: http://extoxnet.orst.edu/pips/cypermet.htm (accessed on 11 October 2010).
[29]
Weston, D.P.; Holmes, R.W.; Lydy, M.J. Residential runoff as a source of pyrethroid pesticides to urban creeks. Environ. Pollut 2009, 157, 287–294.
[30]
Hoai, P.H.; Sebesvari, Z.; Minh, T.B.; Viet, P.H.; Renaud, F.G. Pesticide pollution in agricultural areas of Northern Vietnam: Case study in Hoang Liet and Minh Dai communes. Environ. Pollut 2011, 159, 3344–3350.