全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Dynamic Sensing Performance of a Point-Wise Fiber Bragg Grating Displacement Measurement System Integrated in an Active Structural Control System

DOI: 10.3390/s111211605

Keywords: fiber Bragg grating, sensing system, out-of-plane, point-wise displacement sensor, amplitude-fluctuation electronic speckle pattern interferometry, smart cantilever beam, velocity feedback control

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, a fiber Bragg grating (FBG) sensing system which can measure the transient response of out-of-plane point-wise displacement responses is set up on a smart cantilever beam and the feasibility of its use as a feedback sensor in an active structural control system is studied experimentally. An FBG filter is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. For comparison, a laser Doppler vibrometer (LDV) is utilized simultaneously to verify displacement detection ability of the FBG sensing system. An optical full-field measurement technique called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to provide full-field vibration mode shapes and resonant frequencies. To verify the dynamic demodulation performance of the FBG filter, a traditional FBG strain sensor calibrated with a strain gauge is first employed to measure the dynamic strain of impact-induced vibrations. Then, system identification of the smart cantilever beam is performed by FBG strain and displacement sensors. Finally, by employing a velocity feedback control algorithm, the feasibility of integrating the proposed FBG displacement sensing system in a collocated feedback system is investigated and excellent dynamic feedback performance is demonstrated. In conclusion, our experiments show that the FBG sensor is capable of performing dynamic displacement feedback and/or strain measurements with high sensitivity and resolution.

References

[1]  Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber grating sensors. J. Lightwave Technol 1997, 15, 1442–1463, doi:10.1109/50.618377.
[2]  Rao, Y.J. In-fibre Bragg grating sensors. Meas. Sci. Technol 1997, 8, 355–375, doi:10.1088/0957-0233/8/4/002.
[3]  Hill, K.O.; Meltz, G. Fiber Bragg technology fundamentals and overview. J. Lightwave Technol 1997, 15, 2163–2167.
[4]  Zhang, W.G.; Dong, X.Y.; Zhao, Q.D.; Kai, G.Y.; Yuan, S.Z. FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam. IEEE Photonics Technol. Lett 2001, 13, 1340–1342, doi:10.1109/68.969901.
[5]  Dong, X.Y.; Liu, Q.; Liu, Z.G.; Dong, X.Y. Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor. Opt. Commun 2001, 192, 213–217, doi:10.1016/S0030-4018(01)01157-9.
[6]  Chuang, K.C.; Ma, C.C. Pointwise fiber Bragg grating displacement sensor system for dynamic measurements. Appl. Opt 2008, 47, 3561–3567, doi:10.1364/AO.47.003561. 18617972
[7]  Chopra, I. Review of state of art of smart structures and integrated systems. AIAA J 2002, 40, 2145–2187, doi:10.2514/2.1561.
[8]  Huang, S.; Ohn, M.M.; LeBlanc, M.; Measures, R.M. Continuous arbitrary strain profile measurements with fiber Bragg grating. Smart Mater. Struct 1998, 7, 248–256, doi:10.1088/0964-1726/7/2/012.
[9]  Lu, P.; Chen, Q. Fiber Bragg grating sensor for simultaneous measurement of flow rate and direction. Meas. Sci. Technol 2008, 19, 125302, doi:10.1088/0957-0233/19/12/125302.
[10]  Fallon, R.W.; Zhang, L.; Everall, L.A.; Williams, J.A.R.; Bennion, I. All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating. Meas. Sci. Technol 1998, 9, 1969–1973, doi:10.1088/0957-0233/9/12/007.
[11]  Mora, J.; Cruz, J.L.; Andres, M.V.; Duchowicz, R. Simple high-resolution wavelength monitor based on a fiber Bragg grating. Appl. Opt 2004, 43, 744–749, doi:10.1364/AO.43.000744. 14960064
[12]  Kim, S.; Kim, S.; Kwon, J.; Lee, B. Fiber Bragg grating strain sensor demodulator using a chirped fiber grating. IEEE Photonics Technol. Lett 2001, 13, 839–841, doi:10.1109/68.935821.
[13]  Aphale, S.S.; Fleming, A.J.; Moheimani, S.O.R. Integral resonant control of collocated smart structures. Smart Mater. Struct 2007, 16, 439–446, doi:10.1088/0964-1726/16/2/023.
[14]  Chuang, K.C.; Ma, C.C. Multidimensional dynamic displacement and strain measurement using an intensity demodulation-based fiber Bragg grating sensing system. J. Lightwave Technol 2010, 28, 1897–1905, doi:10.1109/JLT.2010.2049340.
[15]  Jin, W.; Zhou, Y.; Chan, P.K.C.; Xu, H.G. A fibre-optic grating sensor for the study of flow-induced vibrations. Sens. Actuat. A 2000, 79, 36–45, doi:10.1016/S0924-4247(99)00245-9.
[16]  Xu, M.G.; Geiger, H.; Dakin, J.P. Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter. J. Lightwave Technol 1996, 14, 391–396, doi:10.1109/50.485598.
[17]  Pota, H.R.; Moheimani, S.O.R.; Smith, M. Resonant controllers for smart structures. Smart Mater. Struct 2002, 11, 1–8, doi:10.1088/0964-1726/11/1/301.
[18]  Pota, H.R.; Alberts, T.E. Multivariable transfer functions for a slewing piezoelectric laminate beam. ASME J. Dyn. Syst. Meas. Control 1995, 117, 352–359, doi:10.1115/1.2799126.
[19]  Moheimani, S.O.R.; Fleming, A.J. Piezoelectric Transducers for Vibration Control and Damping; Springer: Berlin, Germany, 2006.
[20]  Ma, C.C.; Huang, C.H. The investigation of three-dimensional vibration for piezoelectric rectangular parallelepipeds using the AF-ESPI method. IEEE T. Ultrason. Ferr 2001, 48, 142–153, doi:10.1109/58.895923.
[21]  Chuang, K.C.; Ma, C.C. Tracking control of a multilayer piezoelectric actuator using a fiber Bragg grating displacement sensor system. IEEE T. Ultrason. Ferr 2009, 56, 2036–2049, doi:10.1109/TUFFC.2009.1287.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133