全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

ATLAS: A Traffic Load Aware Sensor MAC Design for Collaborative Body Area Sensor Networks

DOI: 10.3390/s111211560

Keywords: collaborative sensors, Wireless Body Area Network (WBAN), traffic load, IEEE 802.15.4, superframe, energy, throughput, and delay

Full-Text   Cite this paper   Add to My Lib

Abstract:

In collaborative body sensor networks, namely wireless body area networks(WBANs), each of the physical sensor applications is used to collaboratively monitor thehealth status of the human body. The applications of WBANs comprise diverse and dynamictraffic loads such as very low-rate periodic monitoring (i.e., observation) data and high-ratetraffic including event-triggered bursts. Therefore, in designing a medium access control(MAC) protocol for WBANs, energy conservation should be the primary concern duringlow-traffic periods, whereas a balance between satisfying high-throughput demand andefficient energy usage is necessary during high-traffic times. In this paper, we design atraffic load-aware innovative MAC solution for WBANs, called ATLAS. The design exploitsthe superframe structure of the IEEE 802.15.4 standard, and it adaptively uses the contentionaccess period (CAP), contention free period (CFP) and inactive period (IP) of the superframebased on estimated traffic load, by applying a dynamic “wh” (whenever which is required)approach. Unlike earlier work, the proposed MAC design includes load estimation fornetwork load-status awareness and a multi-hop communication pattern in order to preventenergy loss associated with long range transmission. Finally, ATLAS is evaluated throughextensive simulations in ns-2 and the results demonstrate the effectiveness of the protocol.

References

[1]  Warneke, B.; Pister, K. MEMS for distributed wireless sensor networks. Proceedings of the 9th International Conference on Electronics, Circuits and Systems, Dubrovnik, Croatia, 15–18 September 2002; 1, pp. 291–294.
[2]  Hanson, M.; Powell, H.; Barth, A.; Ringgenberg, K.; Calhoun, B.; Aylor, J.; Lach, J. Body area sensor networks: Challenges and opportunities. Computer 2009, 42, 58–65.
[3]  Li, C.; Hao, B.; Zhang, K.; Liu, Y.; Li, J. A novel medium access control protocol with low delay and traffic adaptivity for wireless body area networks. J. Med. Syst 2011, 35, 1265–1275.
[4]  Tang, Q.; Tummala, N.; Gupta, S.; Schwiebert, L. Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue. IEEE Trans. Biomed. Eng 2005, 52, 1285–1294.
[5]  Razzaque, M.A.; Hong, C.S.; Lee, S. Data-centric multiobjective QoS-aware routing protocol for body sensor networks. Sensors 2011, 11, 917–937.
[6]  Chen, M.; Gonzalez, S.; Vasilakos, A.; Cao, H.; Leung, V.C. Body area networks: A survey. Mob. Netw. Appl 2011, 16, 171–193.
[7]  Lee, K.D.; Vasilakos, A.V. Access stratum resource management for reliable u-healthcare service in LTE networks. Wirel. Netw 2011, 17, 1667–1678.
[8]  Nabi, M.; Basten, T.; Geilen, M.; Blagojevic, M.; Hendriks, T. A robust protocol stack for multi-hop Wireless Body Area Networks with transmit power adaptation. Proceedings of the the 5th International Conference on Body Area Networks, (BodyNets ’10), Corfu Island, Greece, September 2010.
[9]  Ullah, S.; Higgins, H.; Braem, B.; Latre, B.; Blondia, C.; Moerman, I.; Saleem, S.; Rahman, Z.; Kwak, K. A comprehensive survey of wireless body area networks. J. Med. Syst 2011, doi:10.1007/s10916-010-9571-3.
[10]  Polastre, J.; Hill, J.; Culler, D. Versatile low power media access for wireless sensor networks. Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys ’04), Baltimore, MD, USA, 3–5 November 2004; ACM: Baltimore, MD, USA, 2004; pp. 95–107.
[11]  Buettner, M.; Yee, G.V.; Anderson, E.; Han, R. X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. Proceedings of the 4th International Conference on Embedded Networked Sensor Systems (SenSys ’06), Boulder, CO, USA, 1–3 November 2006; ACM: Boulder, CO, USA, 2006; pp. 307–320.
[12]  Sun, Y.; Gurewitz, O.; Johnson, D.B. RI-MAC: A receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (SenSys ’08), Raleigh, NC, USA, November 2008; ACM: New York, NY, USA, 2008; pp. 1–14.
[13]  Rahman, M.; Alam, M.; Monowar, M.; Hong, C.; Lee, S. nW-MAC: Multiple wake-up provisioning in asynchronously scheduled duty cycle MAC protocol for wireless sensor networks. Ann. Telecommun 2010, 66, 567–582.
[14]  Ye, W.; Heidemann, J.; Estrin, D. Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw 2004, 12, 493–506.
[15]  Li, C.; Li, H.B.; Kohno, R. Performance evaluation of IEEE 802.15.4 for Wireless Body Area Network (WBAN). Proceedings of the IEEE International Conference on Communications Workshops, Dresden, German, 14–18 June 2009; pp. 1–5.
[16]  Marinkovic, S.; Popovici, E.; Spagnol, C.; Faul, S.; Marnane, W. Energy-efficient low duty cycle MAC protocol for wireless body area networks. IEEE Trans. Inf. Technol. Biomed 2009, 13, 915–925.
[17]  Li, H.; Tan, J. Heartbeat driven medium access control for body sensor networks. Proceedings of the 1st ACM SIGMOBILE International Workshop on Systems and Networking Support for Healthcare and Assisted Living Environments (HealthNet ’07), San Juan, Puerto Rico, 11–14 June 2007; ACM: New York, NY, USA, 2007; pp. 25–30.
[18]  Su, H.; Zhang, X. Battery-dynamics driven tdma mac protocols for wireless body-area monitoring networks in healthcare applications. IEEE J. Sel. Areas Commun 2009, 27, 424–434.
[19]  Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. Proceedings of the 33rd Hawaii International Conference on System Sciences (HICSS ’00), Maui, HI, USA, 4–7 January 2000; IEEE Computer Society: Washington, DC, USA, 2000; pp. 8020–8029.
[20]  Information Sciences Institute. NS-2 Network Simulator, Available online: http://www.cse.msu.edu/wangbo1/ns2/ (accessed on 20 October 2011).
[21]  Timmons, N.; Scanlon, W. Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking. Proceedings of the 1st Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (IEEE SECON 04), Santa Clara, CA, USA, 4–7 October 2004; pp. 16–24.
[22]  Li, C.; Li, H.B.; Kohno, R. Reservation-based dynamic TDMA protocol for medical body area networks. IEICE Trans 2009, 92-B, 387–395.
[23]  Marinkovic, S.; Spagnol, C.; Popovici, E. Energy-efficient TDMA-based MAC protocol for Wireless Body Area Networks. Proceedings of the 3rd International Conference on Sensor Technologies and Applications (SENSORCOMM ’09), Moscow, Russia, 18–20 October 2009; pp. 604–609.
[24]  Rangwala, S.; Gummadi, R.; Govindan, R.; Psounis, K. Interference-aware fair rate control in wireless sensor networks. ACM SIGCOMM Comput. Commun. Rev 2006, 36, 63–74.
[25]  Li, J.; Blake, C.; De Couto, D.S.; Lee, H.I.; Morris, R. Capacity of ad hoc wireless networks. Proceedings of the 7th Annual International Conference on Mobile Computing and Networking (MobiCom ’01), Rome, Italy, 16–21 July 2001; ACM: New York, NY, USA, 2001; pp. 61–69.
[26]  Medhi, J. Stochastic Models in Queueing Theory; Academic Press Professional, Inc.: San Diego, CA, USA, 1991.
[27]  Floyd, S.; Jacobson, V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw 1993, 1, 397–413.
[28]  Paek, J.; Govindan, R. RCRT: Rate-controlled reliable transport for wireless sensor networks. Proceedings of the 5th International Conference on Embedded Networked Sensor Systems (SenSys ’07), Sydney, Australia, 6–9 November 2007; ACM: New York, NY, USA, 2007; pp. 305–319.
[29]  Shnayder, V.; Chen, B.R.; Lorincz, K.; Jones, T.R.F.F.; Welsh, M. Sensor networks for medical care. Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (SenSys ’05), San Diego, CA, USA, 2–4 November 2005; ACM: New York, NY, USA, 2005; pp. 314–314.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133