We combine suspended-core microstructured optical fibers with the photoinduced electron transfer (PET) effect to demonstrate a new type of fluorescent optical fiber-dip sensing platform for small volume ion detection. A sensor design based on a simple model PET-fluoroionophore system and small core microstructured optical fiber capable of detecting sodium ions is demonstrated. The performance of the dip sensor operating in a high sodium concentration regime (925 ppm Na+) and for lower sodium concentration environments (18.4 ppm Na+) is explored and future approaches to improving the sensor’s signal stability, sensitivity and selectivity are discussed.
Roe, JN; Szoka, FC; Verkman, AS. Fibre Optic Sensor for the Detection of Potassium Using Fluorescence Energy Transfer. Analyst 1990, 115, 353–358, doi:10.1039/an9901500353. 2363517
[7]
Wolfbeis, OS. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem 2008, 80, 4269–4283, doi:10.1021/ac800473b. 18462008
[8]
Orellana, G; Haigh, D. New Trends in Fiber-Optic Chemical and Biological Sensors. Curr. Anal. Chem 2008, 4, 273–295, doi:10.2174/157341108785914871.
[9]
Mohr, GJ. Fibre-Optic and Nanoparticle-Based Fluorescence Sensing Using Indicator Dyes: Pitfalls, Self-Referencing, Application, and Future Trends. In Standardization and Quality Assurance in Fluorescence Measurements I; Springer-Verlag: Berlin/Heidelberg, Germany, 2008; 5, pp. 347–372.
[10]
Warren-Smith, SC; Heng, S; Ebendorff-Heidepriem, H; Abell, AD; Monro, TM. Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber. Langmuir 2011, 27, 5680–5685, doi:10.1021/la2002496. 21469740
[11]
Kim, H-J; Hummel, JW; Sudduth, KA; Motavalli, PP. Simultaneous Analysis of Soil Marconutrients Using Ion-Selective Electrodes. SSSAJ 2007, 71, 1867–1877, doi:10.2136/sssaj2007.0002.
[12]
de Marco, R; Clarke, G. Ion-Selective Electrode Potentiometry in Environmental Analysis. Electroanalysis 2007, 19, 1987–2001, doi:10.1002/elan.200703916.
[13]
Ghodrati, M. Point Measurement of Solute Transport Processes in Soil Using Fiber Optic Sensors. Soil Sci. Soc. Am. J 1999, 63, 471–479, doi:10.2136/sssaj1999.03615995006300030008x.
Dybko, A; Wróblewski, W; Ro?niecka, E; Po?niakb, K; Maciejewski, J; Romaniuk, R; Brzózka, Z. Assesment of Water Quality Based on Multiparameter Fiber Optic Probe. Sens. Actuat. B Chem 1998, 51, 208–213, doi:10.1016/S0925-4005(98)00192-0.
[16]
de Silva, AP; Gunaratne, HQN; Gunnlaugsson, T; Huxley, AJM; McCoy, CP; Rademacher, JT; Rice, TE. Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev 1997, 97, 1515–1566, doi:10.1021/cr960386p. 11851458
[17]
de Silva, AP; Moody, TS; Wright, GD. Fluorescent PET (Photoinduced Electron Transfer) Sensors as Potent Analytical Tools. Analyst 2009, 134, 2385–2393, doi:10.1039/b912527m. 19918605
[18]
Qian, X; Xiao, Y; Xu, Y; Guo, X; Qian, J; Zhu, W. “Alive” Dyes as Fluorescent Sensors: Fluorophore, Mechanism, Receptor and Images in Living Cells. Chem. Commun 2010, 46, 6418–6436, doi:10.1039/c0cc00686f.
[19]
Chatterjee, A; Suzuki, TM; Takahashi, Y; Tanaka, DAP. A Density Functional Study to Choose the Best Fluorophore for Photon-Induced Electron-Transfer (PET) Sensors. Chem. Eur. J 2003, 9, 3920–3929, doi:10.1002/chem.200204613. 12916118
[20]
Fahrni, CJ; Yang, LC; VanDerveer, DG. Tuning the Photoinduced Electron-Transfer Thermodynamics in 1,3,5-Triaryl-2-Pyrazoline Fluorophores: X-Ray Structures, Photophysical Characterization, Computational Analysis, and in vivo Evaluation. J. Am. Chem. Soc 2003, 125, 3799–3812, doi:10.1021/ja028266o. 12656613
[21]
He, H; Mortellaro, MA; Leiner, MJP; Young, ST; Fraatz, RJ; Tusa, JK. A Fluorescent Chemosensor for Sodium Based on Photoinduced Electron Transfer. Anal. Chem 2003, 75, 549–555, doi:10.1021/ac0205107. 12585483
[22]
He, H; Mortellaro, MA; Leiner, MJP; Fraatz, RJ; Tusa, JK. A Fluorescent Sensor with High Selectivity and Sensitivity for Potassium in Water. J. Am. Chem. Soc 2003, 125, 1468–1469, doi:10.1021/ja0284761. 12568593
[23]
Tusa, JK; He, H. Critical Care Analyzer with Fluorescent Optical Chemosensors for Blood Analytes. J. Mater. Chem 2005, 15, 2640–2647, doi:10.1039/b503172a.
[24]
Schott Inc. F2-Glass Specifications Online Data Sheet. Available online: http://www.us.schott.com/advanced_optics/us/abbe_datasheets/schott_datasheet_f2.pdf/ (accessed on 4 August 2011).
[25]
Eggeling, C; Volkmer, A; Seidel, CAM. Molecular Photobleaching Kinetics of Rhodamine 6G by One- and Two-Photon Induced Confocal Fluorescence Microscopy. ChemPhysChem 2005, 6, 791–804, doi:10.1002/cphc.200400509. 15884061
[26]
Englich, FV; Foo, TC; Ebendorff-Heidepriem, H; Sumby, CJ; Monro, TM. Towards a Microstructured Optical Fibre Fluorescence Sensor Based on Photoinduced Electron Transfer—Photobleaching. Proceedings of 34th Australian Conference on Optical Fibre Technology (ACOFT 2009), Adelaide, Australia, 29 November–3 December 2009.
[27]
Duke, RM; Veale, EB; Pfeffer, FM; Kruger, PE; Gunnlaugsson, T. Colorimetric and Fluorescent Anion Sensors: An Overview of Recent Developments in the Use of 1,8-Naphthalimide-Based Chemosensors. Chem. Soc. Rev 2010, 39, 3936–3953, doi:10.1039/b910560n. 20818454
[28]
Callan, JF; de Silva, AP; Magri, DC. Luminescent Sensors and Switches in the Early 21st Century. Tetrahedron 2005, 61, 8551–8588, doi:10.1016/j.tet.2005.05.043.
[29]
Afshar, SV; Ruan, Y; Warren-Smith, SC; Monro, TM. Enhanced Fluorescence Sensing Using Microstructured Optical Fibers: A Comparison of Forward and Backward Collection Modes. Opt. Lett 2008, 33, 1473–1475, doi:10.1364/OL.33.001473. 18594669
[30]
Valeur, B; Leray, I. Design Principles of Fluorescent Molecular Sensors for Cation Recognition. Coord. Chem. Rev 2000, 205, 3–40, doi:10.1016/S0010-8545(00)00246-0.
[31]
Ioannidis, M; Gentleman, AS; Ho, L; Lincoln, SF; Sumby, CJ. Complexation and Structural Studies of a Sulfonamide Aza-15-Crown-5 Derivative. Inorg. Chem. Commun 2010, 13, 593–598, doi:10.1016/j.inoche.2010.02.011.
[32]
Minta, A; Tsien, RY. Fluorescent Indicators for Cytosolic Sodium. J. Biol. Chem 1989, 264, 19449–19457. 2808435
[33]
Schultz, RA; Dishong, DM; Gokel, GW. Lariat Ethers. 4. Chain Length and Ring Size Effects in Macrocyclic Polyethers Having Neutral Donor Groups on Flexible Arms. J. Am. Chem. Soc 1982, 104, 625–626, doi:10.1021/ja00366a047.
[34]
Schultz, RA; White, BD; Dishong, DM; Arnold, KA; Gokel, GW. 12-, 15-, and 18-Membered-Ring Nitrogen-Pivot Lariat Ethers: Syntheses, Properties, and Sodium and Ammonium Cation Binding Properties. J. Am. Chem. Soc 1985, 107, 6659–6668, doi:10.1021/ja00309a039.
[35]
Englich, FV; Schartner, EP; Murphy, DF; Ebendorff-Heidepriem, H; Monro, TM. Fusion Splicing Soft-Glass Suspended Core Fibers to Solid Silica Fibers for Optical Fiber Sensing. Proceedings of 35th Australian Conference on Optical Fibre Technology (ACOFT 2010), Melbourne, Australia, 5–9 December 2010.
[36]
Smets, BMJ; Tholen, MGW. Leaching of Glasses with Molar Composition 20Na2O·10RO·xAl2O3·(70-x)SiO2. J. Am. Ceram. Soc 1984, 67, 281–284.
[37]
Bakker, E; Bühlmann, P; Pretsch, E. Polymer Membrane Ion-Selective Electrodes—What are the Limits? Electroanalysis 1999, 11, 915–933, doi:10.1002/(SICI)1521-4109(199909)11:13<915::AID-ELAN915>3.0.CO;2-J.
[38]
Ertekin, K; Tepe, M; Yenigul, B; Akkaya, EU; Henden, E. Fiber optic sodium and potassium sensing by using a newly synthesized squaraine dye in PVC matrix. Talanta 2002, 58, 719–727, doi:10.1016/S0039-9140(02)00329-6. 18968801