全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Earthworms and Soil Pollutants

DOI: 10.3390/s111211157

Keywords: earthworm, metal, oxidative DNA damage

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short review, we describe recent studies concerning the relationship between earthworms and soil pollutants, and discuss the possibility of using the earthworm as a bio-monitoring organism for soil pollution.

References

[1]  Edwards, C.A. The Importance of Earthworms as Key Representatives of the Soil Fauna. In Earthworm Ecology; Edwards, C.A., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2004; pp. 3–11.
[2]  Zhang, Z.S.; Zheng, D.M. Bioaccumulation of total and methyl mercury in three earthworm species (Drawida sp., Allolobophora sp., and Limnodrilus sp.). Bull. Environ. Contam. Toxicol 2009, 83, 937–942, doi:10.1007/s00128-009-9872-8. 19779655
[3]  Harnly, M.; Seidel, S.; Rojas, P.; Fornes, R.; Flessel, P.; Smith, D.; Kreutzer, R.; Goldman, L. Biological monitoring for mercury within a community with soil and fish contamination. Environ. Health Perspect 1997, 105, 424–429, doi:10.1289/ehp.97105424. 9189708
[4]  Regoli, F.; Gorbi, S.; Fattorini, D.; Tedesco, S.; Notti, A.; Machella, N.; Bocchetti, R.; Benedetti, M.; Piva, F. Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: An integrated approach. Environ. Health Perspect 2006, 114, 63–69, doi:10.1289/ehp.8397. 16393660
[5]  Citterio, S.; Aina, R.; Labra, M.; Chiani, A.; Fumagalli, P.; Sgorbati, S.; Santagostino, A. Soil genotoxicity assessment: A new strategy based on biomolecular tools and plant bioindicators. Environ. Sci. Technol 2002, 36, 2748–2753, doi:10.1021/es0157550. 12099474
[6]  Brulle, F.; Mitta, G.; Coquerelle, C.; Vieau, D.; Lemière, S.; Leprêtre, A.; Vandenbulcke, F. Cloning and real-time PCR testing of 14 potential biomarkers in Eisenia fetida following cadmium exposure. Environ. Sci. Technol 2006, 40, 2844–2850, doi:10.1021/es052299x. 16683633
[7]  Reinecke, A.J.; Reinecke, S.A. Earthworm as Test Organisms in Ecotoxicological Assessment of Toxicant Impacts on Ecosystems. In Earthworm Ecology; Edwards, C.A., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2004; pp. 299–320.
[8]  Steenbergen, N.T.T.M.; Iaccino, F.; De Winkel, M.; Reijnders, L.; Peijnenburg, W.J.G.M. Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa. Environ. Sci. Technol 2005, 39, 5694–5702, doi:10.1021/es0501971. 16124304
[9]  Nakashima, T.; Okada, T.; Asahi, J.; Yamashita, A.; Kawai, K.; Kasai, H.; Matsuno, K.; Gamou, S.; Hirano, T. 8-Hydroxydeoxyguanosine generated in the earthworm Eisenia fetida grown in metal-containing soil. Mutat. Res 2008, 654, 138–144, doi:10.1016/j.mrgentox.2008.05.011. 18585474
[10]  Giovanetti, A.; Fesenko, S.; Cozzella, M.L.; Asencio, L.D.; Sansone, U. Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium. J. Environ. Radioact 2010, 101, 509–516, doi:10.1016/j.jenvrad.2010.03.003. 20362371
[11]  Lee, S.H.; Kim, E.Y.; Hyun, S.; Kim, J.G. Metal availability in heavy metal-contaminated open burning and open detonation soil: Assessment using soil enzymes, earthworms, and chemical extractions. J. Hazard. Mater 2009, 170, 382–388, doi:10.1016/j.jhazmat.2009.04.088. 19540045
[12]  van Gestel, C.A.; Koolhaas, J.E.; Hamers, T.; van Hoppe, M.; van Roovert, M.; Korsman, C.; Reinecke, S.A. Effects of metal pollution on earthworm communities in a contaminated floodplain area: Linking biomarker, community and functional responses. Environ. Pollut 2009, 157, 895–903, doi:10.1016/j.envpol.2008.11.002. 19062144
[13]  Natal-da-Luz, T.; Ojeda, G.; Pratas, J.; Van Gestel, C.A.; Sousa, J.P. Toxicity to Eisenia andrei and Folsomia candida of a metal mixture applied to soil directly or via an organic matrix. Ecotoxicol. Environ. Saf 2011, 74, 1715–1720, doi:10.1016/j.ecoenv.2011.05.017. 21683441
[14]  Qiu, H.; Vijver, M.G.; Peijnenburg, W.J. Interactions of cadmium and zinc impact their toxicity to the earthworm Aporrectodea caliginosa. Environ. Toxicol. Chem 2011, 30, 2084–2093, doi:10.1002/etc.595. 21674593
[15]  Lister, L.J.; Svendsen, C.; Wright, J.; Hooper, H.L.; Spurgeon, D.J. Modelling the joint effects of a metal and a pesticide on reproduction and toxicokinetics in Lumbricid earthworms. Environ. Int 2011, 37, 663–670, doi:10.1016/j.envint.2011.01.006. 21329984
[16]  Stürzenbaum, S.R.; Georgiev, O.; Morgan, A.J.; Kille, P. Cadmium detoxification in earthworms: From genes to cells. Environ. Sci. Technol 2004, 38, 6283–6289, doi:10.1021/es049822c. 15597883
[17]  Burgos, M.G.; Winters, C.; Stürzenbaum, S.R.; Randerson, P.F.; Kille, P.; Morgan, J. Cu and Cd effects on the earthworm Lumbricus rubellus in the laboratory: Multivariate statistical analysis of relationships between exposure, biomarkers, and ecologically relevant parameters. Environ. Sci. Technol 2005, 39, 1757–1763, doi:10.1021/es049174x. 15819235
[18]  Huang, R.; Wen, B.; Pei, Z.; Shan, X.-Q.; Zhang, S.; Williams, P.N. Accumulation, subcellular distribution and toxicity of copper in earthworm (Eisenia fetida) in the presence of Ciprofloxacin. Environ. Sci. Technol 2009, 43, 3688–3693, doi:10.1021/es900061t. 19544874
[19]  Andre, J.; Charnock, J.; Stürzenbaum, S.R.; Kille, P.; Morgan, A.J.; Hodoson, M.E. Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: Cell fractionation and high-energy synchrotron analyses. Environ. Sci. Technol 2009, 43, 6822–6829, doi:10.1021/es900275e. 19764255
[20]  Lapied, E.; Nahmani, J.Y.; Moudilou, E.; Chaurand, P.; Labille, J.; Rose, J.; Exbrayat, J.M.; Oughton, D.H.; Joner, E.J. Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terretris after exposure through water, food, and soil. Environ. Int 2011, 37, 1105–1110, doi:10.1016/j.envint.2011.01.009. 21324526
[21]  Rao, J.V.; Kavitha, P. Toxicity of azodrin on the morphology and acetylcholinesterase activity of the earthworm Eisenia foetida. Environ. Res 2004, 96, 323–327, doi:10.1016/j.envres.2004.02.014. 15364600
[22]  Sellstr?m, U.; de Wit, C.A.; Lundgren, N.; Tysklind, M. Effect of sewage-sludge application on concentration of higher-brominated diphenyl ethers in soils and earthworms. Environ. Sci. Technol 2005, 39, 9064–9070, doi:10.1021/es051190m. 16382926
[23]  Xu, P.; Diao, J.; Liu, D.; Zhou, Z. Enantioselective bioaccumulation and toxic effects of metalaxyl in earthworm Eisenia foetida. Chemosphere 2011, 83, 1074–1079, doi:10.1016/j.chemosphere.2011.01.047. 21315406
[24]  Stürzenbaum, S.R.; Kille, P.; Morgan, A.J. The identification, cloning and characterization of earthworm metallothionein. FEBS Lett 1998, 431, 437–442, doi:10.1016/S0014-5793(98)00809-6. 9714559
[25]  Stürzenbaum, S.R.; Winters, C.; Galay, M.; Morgan, A.J.; Kille, P. Metal ion trafficking in earthworms. J. Biol. Chem 2001, 36, 34013–34018.
[26]  Novais, S.C.; Gomes, S.I.; Gravato, C.; Guilhermino, L.; De Coen, W.; Soares, A.M.; Amorim, M.J. Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures. Environ. Pollut 2011, 159, 1836–1843, doi:10.1016/j.envpol.2011.03.031. 21514019
[27]  Nahmani, J.; Hodson, M.E.; Black, S. Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils. Environ. Pollut 2007, 49, 44–58.
[28]  Wood, M.L.; Dizdarogle, M.; Gajewski, E.; Essigmann, J.M. Mechanistic studies of ionizing radiation and oxidative mutagenesis: Genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 1990, 29, 7024–7032, doi:10.1021/bi00482a011. 2223758
[29]  Shibutani, S.; Takeshita, M.; Grollman, A.P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-OH-dG. Nature 1991, 349, 431–434, doi:10.1038/349431a0. 1992344
[30]  Cheng, K.C.; Cahill, D.S.; Kasai, H.; Nishimura, S.; Loeb, A.P. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A→C substitutions. J. Biol. Chem 1992, 267, 166–172. 1730583
[31]  Chromium, Nickel, Welding; IARC Monographs: Lyon, France, 1990. Volume 49.
[32]  Beryllium, Cadmium, Mercury and Exposures in the Glass Manufacturing Industry; IARC Monographs: Lyon, France, 1993. Volume 58.
[33]  Hirano, T.; Yamaguchi, Y.; Kasai, H. Inhibition of 8-hydroxyguanine repair in testes after administration of cadmium chloride to GSH-depleted rats. Toxicol. Appl. Pharmacol 1997, 147, 9–14, doi:10.1006/taap.1997.8260. 9356302
[34]  Dalley, H.; Hartwig, A. Induction and repair inhibition of oxidative DNA damage by nickel (II) and cadmium (II) in mammalian cells. Carcinogenesis 1997, 18, 1021–1026, doi:10.1093/carcin/18.5.1021. 9163690
[35]  Merzenich, H.; Hartwig, A.; Ahrens, W.; Beyersmann, D.; Schlepegrell, R.; Scholze, M.; Timm, J.; J?ckel, K.H. Biomonitoring on carcinogenic metals and oxidative DNA damage in a cross-sectional study. Cancer Epidemiol. Biomark. Prevent 2001, 10, 515–522.
[36]  Hengstler, J.G.; Bolm-Audorff, U.; Faldum, A.; Janssen, K.; Reifenrath, M.; G?tte, W.; Jung, D.; Mayer-Popken, O.; Fuchs, J.; Gebhard, S.; Bienfait, H.G.; Schlink, K.; Dietrich, C.; Faust, D.; Epe, B.; Oesch, F. Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis 2003, 24, 63–73, doi:10.1093/carcin/24.1.63. 12538350
[37]  Saxe, J.K.; Impellitteri, C.A.; Peijnenburg, W.J.; Allen, H.E. Novel model describing trace metal concentrations in the earthworm. Eisenia andrei. Environ. Sci. Technol 2001, 35, 4522–4529, doi:10.1021/es0109038.
[38]  Vijver, M.G.; Wolterbeek, H.T.; Vink, J.P.; van Gestel, C.A. Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body. Sci. Total Environ 2005, 340, 271–280, doi:10.1016/j.scitotenv.2004.12.018. 15752507
[39]  Bonnard, M.; Eom, I.C.; Morel, J.L.; Vasseur, P. Genotoxic and reproductive effects of an industrially contaminated soil on the earthworm Eisenia fetida. Environ. Mol. Mutagen 2009, 50, 60–67, doi:10.1002/em.20436. 19031410
[40]  Li, M.; Liu, Z.; Xu, Y.; Cui, Y.; Li, D.; Kong, Z. Comparative effects of Cd and Pb on biochemical response and DNA damage in the earthworm Eisenia fetida (Amelida, Oligocheta). Chemosphere 2009, 74, 621–625, doi:10.1016/j.chemosphere.2008.10.048. 19059628

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133