|
自然科学进展 2007
Nonlinear interactions between gravity waves and background windsKeywords: gravity waves,background winds,vertical group velocity,vertical wavelength,nonlinear interactions Abstract: Using the nonlinear propagating gravity waves (GW) model in the two-dimensional compressible atmosphere and the linear GW theory, the process of GW propagation in different background winds, e.g. the direction of the background wind is opposite to (dead wind) or the same as (tail wind) the direction of the horizontal phase velocity of GW, is studied. The results show that the dead wind prolongs the vertical wavelength and accelerates GW propagation. Therefore, GW propagates up to a higher height becomes instable in a short time and eventually induces an inverse jet flow. Then, the vertical wavelength is becoming short due to the nonlinear interactions between GW and the inverse jet flow. The vertical wavelength and group velocity decrease after GW propagates into the tail wind. The initial instable time is delayed. Although most of GW is trapped in the instable region, some of GW propagates above the instable region. Compared with GW propagation in the tail wind, the nonlinear interactions between GW and the dead wind are also strong. In contrast, the linear GW theory predicts that GW can propagate freely in the dead wind. The vertical wavelength simulated by the nonlinear numerical model is different from that predicted by the linear theory greatly after GW propagates into the dead wind.
|