Finite element method analysis was applied to the characterization of the biomolecular interactions taking place in a microfluidic assisted microarray. Numerical simulations have been used for the optimization of geometrical and physical parameters of the sensing device. Different configurations have been analyzed and general considerations have been derived. We have shown that a parallel disposition of the sensing area allows the homogeneous formation of the target molecular complex in all the active zones of the microarray. Stationary and time dependent results have also been obtained.
Godin, J; Chen, C; Cho, SH; Qiao, W; Tsai, F; Lo, Y. Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip. J. Biophotonics 2008, 1, 355–376, doi:10.1002/jbio.200810018. 19343660
Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem 2003, 377, 528–539, doi:10.1007/s00216-003-2101-0. 12879189
[7]
De Stefano, L; Arcari, P; Lamberti, A; Sanges, C; Rotiroti, L; Rea, I; Rendina, I. DNA optical detection based on porous silicon technology: From biosensors to biochips. Sensors 2007, 7, 214–221, doi:10.3390/s7020214.
[8]
Rea, I; Lamberti, A; Rendina, I; Coppola, G; Gioffrè, M; Iodice, M; Casalino, M; De Tommasi, E; De Stefano, L. Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions. J Appl Phys 2010, 107, 014513–014513-4, doi:10.1063/1.3273410.
[9]
Parsa, H; Chin, CD; Mongkolwisetwara, P; Lee, BW; Wang, JJ; Sia, SK. Effect of volume- and time-based constraints on capture of analytes in microfluidic heterogeneous immunoassays. Lab Chip 2008, 8, 2062, doi:10.1039/b813350f. 19023469
[10]
Kim, DR; Zheng, X. Numerical characterization and optimization of the microfluidics for nanowire biosensors. Nano Lett 2008, 8, 3233–3237, doi:10.1021/nl801559m. 18788786
[11]
Yang, C-K; Chang, J-S; Chao, SD; Wu, K-C. Two dimensional simulation on immunoassay for a biosensor with applying electrothermal effect. Appl. Phys. Lett 2007, 91, 113904, doi:10.1063/1.2784941.
[12]
Huang, C-T; Jen, C-P; Chao, T-C; Wu, W-T; Li, W-Y; Chau, L-K. A novel design of grooved fibers for fiber-optic localized plasmon resonance biosensors. Sensors 2009, 9, 6456–6470, doi:10.3390/s90806456. 22454595
[13]
Hu, G; Gao, Y; Li, D. Modeling micropatterned antigen-antibody binding kinetics in a microfluidic chip. Biosens. Bioelectron 2007, 22, 1403–1409, doi:10.1016/j.bios.2006.06.017. 16879959
[14]
Lee, HH; Smoot, J; McMurray, Z; Stahl, DA; Yager, P. Recirculating flow accelerates DNA microarray hybridization in a microfluidic device. Lab Chip 2006, 6, 1163, doi:10.1039/b605507a. 16929395
[15]
Srivannavit, O; Gulari, M; Hua, Z; Gao, X; Zhou, X; Hong, A; Zhou, T; Gulari, E. Microfluidic reactor array device for massively parallel in situ synthesis of oligonucleotides. Sens. Actuat. B 2009, 140, 473–481, doi:10.1016/j.snb.2009.04.071.
[16]
Myszka, DG. Survey of the 1998 optical biosensor literature. J. Mol. Recognit 1999, 12, 390–408, doi:10.1002/(SICI)1099-1352(199911/12)12:6<390::AID-JMR482>3.0.CO;2-8. 10611648
[17]
Bruus, H. Microfluidics and lab-on-a-chip technology. In MIC–Supplementary Lecture Notes, 2nd ed ed.; Technical University of Denmark: Kgs Lyngby, Denmark, 2007.