Various ZnO nanostructures such as porous nanorods and two hierarchical structures consisting of porous nanosheets or crystalline nanorods were prepared by the reaction of mixtures of oleic-acid-dissolved ethanol solutions and aqueous dissolved Zn-precursor solutions in the presence of NaOH. All three ZnO nanostructures showed sensitive and selective detection of C2H5OH. In particular, ultra-high responses (Ra/Rg =?~1,200, Ra: resistance in air, Rg: resistance in gas) to 100 ppm C2H5OH was attained using porous nanorods and hierarchical structures assembled from porous nanosheets, which is one of the highest values reported in the literature. The gas response and linearity of gas sensors were discussed in relation to the size, surface area, and porosity of the nanostructures.
References
[1]
Yamazoe, N. Toward innovations of gas sensor technology. Sens. Actuat. B 2005, 108, 2–14, doi:10.1016/j.snb.2004.12.075.
[2]
Barsan, N; Weimar, N. Conduction model of metal oxide gas sensors. J. Electroceram 2001, 7, 143–167, doi:10.1023/A:1014405811371.
[3]
Franke, ME; Koplin, TJ; Simon, U. Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2006, 2, 36–50, doi:10.1002/smll.200500261. 17193551
[4]
Shimizu, Y; Egashira, M. Basic aspects and challenges of semiconductor gas sensors. MRS Bull 1999, 24, 18–24.
[5]
Kolmakov, A; Moskovits, M. Chemical sensing and catalyst by one-dimensional metal oxide nanostructures. Annu. Rev. Mater. Res 2004, 34, 151–180, doi:10.1146/annurev.matsci.34.040203.112141.
[6]
Comini, E; Bratto, C; Faglia, G; Ferroni, A; Vomiero, M; Sberveglieri, G. Quasi-one dimensional metal oxide semiconductors: preparation and characterization and application as chemical sensors. Prog. Mater. Sci 2009, 54, 1–67, doi:10.1016/j.pmatsci.2008.06.003.
[7]
Brinzari, V; Korotchenkov, G; Golovanov, V. Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: Understanding and possibilities of control. Thin Solid Films 2001, 391, 167–175, doi:10.1016/S0040-6090(01)00978-6.
[8]
Sakai, G; Matsunaga, N; Shimanoe, K; Yamazoe, N. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuat. B 2001, 80, 125–131, doi:10.1016/S0925-4005(01)00890-5.
[9]
Xu, CN; Tamaki, J; Miura, N; Yamazoe, N. Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuat. B 1991, 3, 147–155, doi:10.1016/0925-4005(91)80207-Z.
[10]
Kida, T; Doi, T; Shimanoe, K. Synthesis of monodispersed SnO2nanocrystals and their remarkably high sensitivity to volatile organic compounds. Chem. Mater 2010, 8, 2662–2667.
[11]
Rossinyol, E; Prim, A; Pellicer, E; Arbiol, J; Hernández-Ramírez, F; Peiró, F; Cornet, A; Morante, JR; Solovyov, LA; Tian, B; Bo, T; Zhao, D. Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas sensing applications. Adv. Funct. Mater 2007, 17, 1801–1806, doi:10.1002/adfm.200600722.
[12]
Lee, C-Y; Kim, S-J; Hwang, I-S; Lee, J-H. Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO3 hollow microspheres. Sens. Actuat. B 2009, 142, 236–242, doi:10.1016/j.snb.2009.08.031.
[13]
Kim, H-J; Choi, K-I; Pan, A; Kim, I-D; Kim, H-R; Kim, K-M; Na, C-W; Cao, G; Lee, J-H. Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries. J. Mater. Chem 2011, 21, 6549–6555, doi:10.1039/c0jm03516e.
[14]
Liu, B; Zeng, HC. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. J. Am. Chem. Soc 2004, 125, 4430–4431.
[15]
Zhang, Y; Mu, J. Controllable synthesis of flower- and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate. Nanotechnology 2007, 18, 075606, doi:10.1088/0957-4484/18/7/075606. 21730508
[16]
Cho, P-S; Kim, K-W; Lee, J-H. NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method. J. Electroceram 2005, 17, 975–978.
[17]
Yamabi, S; Imai, H. Growth conditions for wurzite zinc oxide films in aqueous solutions. J. Mater. Chem 2002, 12, 3773–3778, doi:10.1039/b205384e.
[18]
Pal, U; Santiago, P. Controlling the Morphology of ZnO Nanostructures in a Low-Temperature Hydrothermal Process. J. Phys. Chem. B 2005, 109, 15317–15321, doi:10.1021/jp052496i. 16852941
[19]
Huang, J; Wu, Y; Gu, C; Zhai, M; Yu, K; Yang, M; Liu, J. Large-scale synthesis of flowerlike ZnO nanostructures by a simple chemical solution route and its gas-sensing property. Sens. Actuat. B 2010, 146, 206–212, doi:10.1016/j.snb.2010.02.052.
[20]
Liu, B; Zeng, HC. Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 2004, 20, 4196–4204, doi:10.1021/la035264o. 15969417
[21]
Zhao, W; Song, X; Yin, Z; Fan, C; Chen, G; Sun, S. Self-assembly of ZnO nanosheets into nanoflowers at room temperature. Mater. Res. Bull 2008, 43, 3171–3176, doi:10.1016/j.materresbull.2007.11.013.
[22]
Fan, Z; Wang, D; Chang, P-C; Tseng, W-Yu; Lu, JG. ZnO nanowire field effect transistor and oxygen sensing property. Appl. Phys. Lett 2004, 86, 5932.
[23]
Zing, Z; Zhan, J. Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater 2008, 20, 4547–4551, doi:10.1002/adma.200800243.
[24]
Lee, J-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuat. B 2009, 140, 319–336, doi:10.1016/j.snb.2009.04.026.
[25]
Kim, H-R; Choi, K-I; Lee, J-H; Akbar, SA. Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres. Sens. Actuat. B 2009, 136, 138–143, doi:10.1016/j.snb.2008.11.016.
[26]
Choi, K-I; Kim, H-R; Lee, J-H. Enhanced CO sensing characteristics of hierarchical and hollow In2O3 microspheres. Sens. Actuat. B 2009, 138, 497–503, doi:10.1016/j.snb.2009.02.016.
[27]
Kim, K-M; Kim, H-R; Choi, K-I; Kim, H-J; Lee, J-H. ZnO hierarchical nanostructures grown at room temperature and their C2H5OH sensor applications. Sens. Actuat. B 2011, 155, 745–751, doi:10.1016/j.snb.2011.01.040.
[28]
Peterson, RB; Fields, CL; Gregg, BA. Epitaxial chemical deposition of ZnO nanocolumns from NaOH solutions. Langmuir 2004, 20, 5114–5118, doi:10.1021/la049683c. 15984276
[29]
Yi, R; Zhang, N; Zhou, H; Shi, R; Qui, G. Selective synthesis and characterization of flower-like ZnO microstructures via a facile hydrothermal route. Mater. Sci. Eng. B 2008, 153, 25–30, doi:10.1016/j.mseb.2008.09.017.
Wan, Q; Li, QH; Chen, YJ; Wang, TH; He, XL; Li, JP; Lin, CL. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett 2004, 84, 3654–3656, doi:10.1063/1.1738932.
[32]
Calestani, D; Zha, M; Mosca, R; Zappettini, A; Carotta, MC; Natale, CD; Zanotti, L. Growth of ZnO tetrapods for nanostructure-based gas sensors. Sens. Actuat. B 2010, 133, 472–478.
[33]
Hieu, NV; Chien, ND. Low-temperature growth and ethanol-sensing characteristics of quasi-one-dimensional ZnO nanostructures. Sens. Actuat. B 2008, 403, 50–56.
[34]
Sun, Z-P; Liu, L; Zhang, L; Jia, D-Z. Rapid synthesis of ZnO nano-rods byone-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology 2006, 17, 2266–2270, doi:10.1088/0957-4484/17/9/032.
[35]
Singha, RC; Singha, O; Singh, MP; Chandic, PS. Synthesis of zinc oxide nanorods and nanoparticles by chemical route and their comparative study as ethanol sensors. Sens. Actuat. B 2008, 135, 352–357, doi:10.1016/j.snb.2008.09.004.
[36]
Tamaekong, N; Liewhiran, C; Wisitsoraat, A; Phanichphant, S. Flame-spray-made undoped zinc oxide films for gas sensing applications. Sensors 2010, 10, 7863–7873, doi:10.3390/s100807863. 22163630
[37]
Wu, W-Y; Ting, J-M; Huang, P-J. Electrospun ZnO nanowires as gas sensors for ethanol detection. Nanoscale. Res. Lett 2009, 4, 513–517, doi:10.1007/s11671-009-9271-4. 20596477
[38]
Feng, P; Wan, Q; Wang, TH. Contact-controlled sensing properties of flowerlike ZnO nanostructures. Appl. Phys. Lett 2005, 87, 213111, doi:10.1063/1.2135391.
[39]
Zhang, W-D; Zhang, W-H; Ma, X-Y. Tunable ZnO nanostructures for ethanol sensing. J. Mater. Sci 2009, 44, 4677–4682, doi:10.1007/s10853-009-3716-0.
[40]
Han, X; Jin, M; Xie, S; Kuang, Q; Jiang, Z; Jiang, Y; Xie, Z; Zheng, L. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed. Engl 2009, 48, 9180–9183, doi:10.1002/anie.200903926. 19856357