全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation

DOI: 10.3390/s111211390

Keywords: pedestrian navigation, orientation estimation, quasi-static magnetic field

Full-Text   Cite this paper   Add to My Lib

Abstract:

Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.

References

[1]  Alonso, J.M.; Ocana, M.; Sotelo, M.A.; Bergasa, L.M.; Magdalena, L. Wifi Localization System Using Fuzzy Rule-Based Classification. In Computer Aided Systems Theory—Eurocast 2009; MorenoDiaz, R., Pichler, F., Quesada Arencibia, A., Eds.; Springer-Verlag: Berlin, Germany, 2009; Volume 5717, pp. 383–390.
[2]  Inoue, Y.; Sashima, A.; Kurumatani, K. Indoor Positioning System Using Beacon Devices for Practical Pedestrian Navigation on Mobile Phone. Proceedings of the 6th International Conference on Ubiquitous Intelligence and Computing, UIC'09, Brisbane, Australia, 7–9 July 2009; pp. 251–265.
[3]  Luimula, M.; Saaskilahti, K.; Partala, T.; Pieska, S.; Alaspaa, J. Remote navigation of a mobile robot in an rfid-augmented environment. Pers. Ubiquitous Comput 2010, 14, 125–136.
[4]  Shen, G.W.; Zetik, R.; Hirsch, O.; Thoma, R.S. Range-based localization for uwb sensor networks in realistic environments. EURASIP J. Wirel. Commun. Netw 2010, 2010, 476598:1–476598:9.
[5]  Ramalingam, R.; Anitha, G.; Shanmugam, J. Microelectromechnical systems inertial measurement unit error modelling and error analysis for low-cost strapdown inertial navigation system. Def. Sci. J 2009, 59, 650–658.
[6]  Bekir, E. Introduction to Modern Navigation Systems; World Scientific: Hackensack, NJ, USA, 2007; p. xiv.
[7]  Renaudin, V.; Merminod, B.; Kasser, M. Optimal Data Fusion for Pedestrian Navigation Based on UWB and MEMS. Proceedings of the 2008 IEEE/ION Position, Location And Navigation Symposium, Monterey, CA, USA, 5–8 May 2008; 1–3, pp. 753–761.
[8]  Suh, Y.S.; Park, S. Pedestrian Inertial Navigation with Gait Phase Detection Assisted Zero Velocity Updating. Proceedings of the Fourth International Conference on Autonomous Robots and Agents, Wellington, New Zealand, 10–12 February 2009; pp. 505–510.
[9]  Steinhoff, U.; Schiele, B. Dead Reckoning from the Pocket—An Experimental Study. Proceedings of 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom), Mannheim, Germany, 29 March–2 April 2010; pp. 162–170.
[10]  Kamisakata, D.; Muramatsu, S.; Iwamoto, T.; Yokoyama, H. Design and implementation of pedestrian dead reckoning system on a mobile phone. IEICE Trans. Inf. Syst 2011, E94D, 1137–1146.
[11]  Farrell, J.; Barth, M. The Global Positioning System and Inertial Navigation; McGraw-Hill: New York, NY, USA, 1999.
[12]  Afzal, M.H. Use of Earth’s Magnetic Field for Pedestrian NavigationPh.D. Thesis. University of Calgary, Calgary, AB, Canada, 2011.
[13]  Knoepfel, H. Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use; Wiley: New York, NY, USA, 2000; p. xxi.
[14]  Milsom, J. Field Geophysics, 3rd ed ed.; Wiley: New York, NY, USA, 2003.
[15]  Haines, G.V.; Newitt, L.R. The Canadian geomagnetic reference field 1995. J. Geomagn. Geoelectr 1997, 49, 317–336.
[16]  Afzal, M.H.; Renaudin, V.; Lachapelle, G. Assessment of Indoor Magnetic Field Anomalies Using Multiple Magnetometers. Proceedings of ION GNSS10, Portland, OR, USA, 21–24 September 2010; pp. 1–9.
[17]  Wertz, J.R. Space Attitude Determination and Control; Kluwer Academic Publishers: Dordrecht The Netherlands, 1990.
[18]  Wahba, G. Problem 65-1: A least squares estimate of spacecraft attitude. SIAM Rev 1965, 7, 409.
[19]  Shuster, M.D.; Oh, S.D. Three-axis attitude determination from vector observations. J. Guid. Control 1981, 4, 70–77.
[20]  Farrell, J. Aided Navigation: GPS with High Rate Sensors; McGraw-Hill: New York, NY, USA, 2008; p. xxi.
[21]  Bak, T. Spacecraft Attitude Determination—A Magnetometer ApproachPh.D. Thesis. Department of Control Engineering, Aalborg University, Aalborg, Denmark, 1999.
[22]  Brown, R.G.; Hwang, P.Y.C. Introduction to Random Signals and Applied Kalman Filtering, 3rd ed ed.; John Wiley & Sons: New York, NY, USA, 1997.
[23]  Britting, K.R. Inertial Navigation Systems Analysis; Wiley-Interscience: New York, NY, USA, 1971; p. 249.
[24]  Cohen, C.E. Attitude Determination Using GPSPh.D. Thesis. Stanford University, Stanford, CA, USA, 1992.
[25]  Grewal, M.S.; Weill, L.R.; Andrews, A.P. Global Positioning Systems, Inertial Navigation, and Integration; John Wiley & Sons: New York, NY, USA, 2001.
[26]  Renaudin, V.; Afzal, H.; Lachapelle, G. Complete tri-axis magnetometer calibration in the magnetic field domain. J. Sens 2010, 2010, 967245:1–967245:10.
[27]  Afzal, M.H.; Renaudin, V.; Lachapelle, G. Magnetic Field Based Heading Estimation for Pedestrian Navigation Environments. Proceedings of International Conference on Positioning and Indoor Navigation (IPIN), Guimaraes, Portugal, 21–23 September 2011; pp. 1–10.
[28]  Natanson, G.A.; Challa, M.S.; Deutschmann, J.; Baker, D.F. Magnetometer-Only Attitude and Rate Determination for a Gyro-Less Spacecraft. Proceedings of Third International Symposium on Space Mission Operations and Ground Data Systems, Greenbelt, MD, USA, 1994; pp. 791–798.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133