A 2 μW power dissipation, voltage-output, humidity sensor accurate to 5% relative humidity was developed using the LFoundry 0.15 μm CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a Intervia Photodielectric 8023-10 humidity-sensitive layer, and a CMOS capacitance to voltage converter.
References
[1]
Silverthorne, SV; Watson, CW; Baxter, RD. Integrated Relative Humidity Sensor, Technique Digest. Proceedings of IEEE Solid-state Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 6–9 June 1998; pp. 67–71.
[2]
Okcan, B; Akin, T. A Low-Power Robust Humidity Sensor in a Standard CMOS Process. IEEE Trans. Electron Devices 2007, 54, 3071–3078.
[3]
Baglio, S; Castorina, S; Sacco, V; Savalli, N; Tringali, C. Dew-point Relative Humidity CMOS Microsensors. Proceedings of 2004 IEEE Sensors, Vienna, Austria, 24–27 October 2004; pp. 103–106.
Zhao, C-L; Huang, H-A; Qin, M; Li, WH. A CMOS Interdigital Capacitive Humidity Sensor with Polysilicon Heaters. Proceedings of 2010 IEEE Sensors, Kona, HI, USA, 1–4 November 2010; pp. 382–385.
[6]
Laconte, J; Wilmart, V; Raskin, J-P; Flandre, D. Capacitive Humidity Sensor Using a Polyimide Sensing Film. Proceedings of Design, Test, Integration & Packaging of MEMS/MOEMS, Aix-en-Provence, France, 11–13 May 2011; pp. 223–228.
[7]
Dai, C-L; Lu, D-H. Fabrication of a Micro Humidity Sensor with Polypyrrole Using the CMOS Process. Proceedings of 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, 20–23 January 2010; pp. 110–113.
[8]
Kodama, R; Miyao, H; Sawada, K; Ishida, M; Takao, H. Highly Sensitive Micro Force Sensor Array with In-pixel Type CV Conversion Circuits. Proceedings of 27th Conference on the Electrical Engineering and Micromachining, Matsue, Japan, 14–15 October 2010; pp. 161–166.