全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

A Microfluidic Long-Period Fiber Grating Sensor Platform for Chloride Ion Concentration Measurement

DOI: 10.3390/s110908550

Keywords: microfluidic, long-period fiber grating (LPFG), chloride ion, transmitted optical power, random walk coefficient, bias stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

Optical fiber sensors based on waveguide technology are promising and attractive in chemical, biotechnological, agronomy, and civil engineering applications. A microfluidic system equipped with a long-period fiber grating (LPFG) capable of measuring chloride ion concentrations of several sample materials is presented. The LPFG-based microfluidic platform was shown to be effective in sensing very small quantities of samples and its transmitted light signal could easily be used as a measurand. The investigated sample materials included reverse osmosis (RO) water, tap water, dilute aqueous sample of sea sand soaked in RO water, aqueous sample of sea sand soaked in RO water, dilute seawater, and seawater. By employing additionally a chloride ion-selective electrode sensor for the calibration of chloride-ion concentration, a useful correlation (R2 = 0.975) was found between the separately-measured chloride concentration and the light intensity transmitted through the LPFG at a wavelength of 1,550 nm. Experimental results show that the sensitivity of the LPFG sensor by light intensity interrogation was determined to be 5.0 × 10?6 mW/mg/L for chloride ion concentrations below 2,400 mg/L. The results obtained from the analysis of data variations in time-series measurements for all sample materials show that standard deviations of output power were relatively small and found in the range of 7.413 × 10?5–2.769 × 10?3 mW. In addition, a fairly small coefficients of variations were also obtained, which were in the range of 0.03%–1.29% and decreased with the decrease of chloride ion concentrations of sample materials. Moreover, the analysis of stability performance of the LPFG sensor indicated that the random walk coefficient decreased with the increase of the chloride ion concentration, illustrating that measurement stability using the microfluidic platform was capable of measuring transmitted optical power with accuracy in the range of ?0.8569 mW/√h to ?0.5169 mW/√h. Furthermore, the bias stability was determined to be in the range of less than 6.134 × 10?8 mW/h with 600 s time cluster to less than 1.412 × 10?6 mW/h with 600 s time cluster. Thus, the proposed LPFG-based microfluidic platform has the potential for civil, chemical, biological, and biochemical sensing with aqueous solutions. The compact (3.5 × 4.2 cm), low-cost, real-time, small-volume (~70 μL), low-noise, and high-sensitive chloride ion sensing system reported here could hopefully benefit the development and applications in the field of chemical, biotechnical, soil and geotechnical, and civil

References

[1]  Udd, E. Fiber optic smart structures. Proc. IEEE 1996, 84, 884–894, doi:10.1109/5.503144.
[2]  Culshaw, B; Dakin, J. Optical Fiber Sensors: Applications, Analysis, and Future; Artech House: Boston, MA, USA, 1997.
[3]  Moyoa, P; Brownjohnb, JMW; Sureshc, R; Tjinc, SC. Development of fiber Bragg grating sensors for monitoring civil infrastructure. Eng. Struct 2005, 27, 1828–1834, doi:10.1016/j.engstruct.2005.04.023.
[4]  Wang, J-N; Tang, J-L. Feasibility of fiber Bragg grating and long-period fiber grating sensors under different environmental conditions. Sensors 2010, 10, 10105–10127, doi:10.3390/s101110105. 22163460
[5]  Mindess, S; Young, JF; Darwin, D. Concrete, 2nd ed ed.; Person: Taipei, Taiwan, 2001.
[6]  Tang, J-L; Wang, J-N. Measurement of chloride ion concentration in concrete structures with long-period grating technology. Smart Mater. Struct 2007, 16, 665–672, doi:10.1088/0964-1726/16/3/013.
[7]  Bright, FV; Poirier, GE; Hieftje, GM. A new ion sensor based on fiber optics. Talanta 1988, 35, 113–118, doi:10.1016/0039-9140(88)80048-1. 18964478
[8]  Noiré, MH; Duréault, B. A ferrous ion optical sensor based on fluorescence quenching. Sens. Actuat. B 1995, 29, 386–391, doi:10.1016/0925-4005(95)01712-7.
[9]  Freiner, D; Kunz, RE; Citterio, D; Spichiger, UE; Gale, MT. Optical sensors based on refractometry of ion-selective membranes. Sens. Actuat. B 1995, 29, 277–285, doi:10.1016/0925-4005(95)01694-5.
[10]  Tóth, K; Nagy, G; Lan, BTT; Jeney, J; Choquette, SJ. Planar waveguide ion-selective sensors. Anal. Chim. Acta 1997, 353, 1–10, doi:10.1016/S0003-2670(97)00382-6.
[11]  Rayss, J; Sudolski, G; Gorgol, A; Janusz, W; Gagan, AM. Optical aspects of Na+ ions adsorption on sol-gel porous films used in optical fiber sensors. J. Colloid Interf. Sci 2002, 250, 168–174, doi:10.1006/jcis.2002.8347.
[12]  Xu, C; Qin, Y; Bakker, E. Optical chloride sensor based on [9]mercuracarborand-3 with massively expanded measuring range. Talanta 2004, 63, 180–184, doi:10.1016/j.talanta.2003.10.033. 18969417
[13]  Ceresa, A; Qin, Y; Peper, S; Bakker, E. Mechanistic insights into the development of optical chloride sensors based on the [9]mercuracarborand-3 ionophore. Anal. Chem 2003, 75, 133–140, doi:10.1021/ac026055w. 12530829
[14]  Huber, C; Klimant, I; Krause, C; Wolfbeis, OS. Dual lifetime referencing as applied to a chloride optical sensor. Anal. Chem 2001, 73, 2097–2103, doi:10.1021/ac9914364. 11354496
[15]  Schazmann, B; Alhashimy, N; Diamond, D. Chloride selective calix[4]arene optical sensor combining urea functionality with pyrene excimer transduction. J. Am. Chem. Soc 2006, 128, 8607–8614, doi:10.1021/ja061917m. 16802827
[16]  Zhang, W; Rozniecka, E; Malinowska, E; Parzuchowski, P; Meyerhoff, ME. Optical chloride sensor based on dimer-monomer equilibrium of indium(III) octaethylporphyrin in polymeric film. Anal. Chem 2002, 74, 4548–4557, doi:10.1021/ac0202536. 12236368
[17]  Park, SB; Matuszewski, W; Meyerhoff, ME; Liu, YH; Kadish, KM. Potentiometric anion selectivities of polymer membranes doped with indium(III) porphyrins. Electroanalysis 1991, 3, 909–916, doi:10.1002/elan.1140030906.
[18]  Tan, SSS; Hauser, PC; Wang, K; Fluri, K; Seiler, K; Rusterholz, B; Suter, G; Krüttli, M; Spichiger, UE; Simon, W. Reversible optical sensing membrane for the determination of chloride in serum. Anal. Chim. Acta 1991, 255, 35–44, doi:10.1016/0003-2670(91)85084-6.
[19]  Xiao, KP; Bühlmann, P; Nishizawa, S; Amemiya, S; Umezawa, Y. A chloride ion-selective solvent polymeric membrane electrode based on a hydrogen bond forming ionophore. Anal. Chem 1997, 69, 1038–1044, doi:10.1021/ac961035d.
[20]  Ong, KG; Paulose, M; Grimes, CA. A wireless, passive, magnetically-soft harmonic sensor for monitoring sodium hypochlorite concentrations in water. Sensors 2003, 3, 11–18, doi:10.3390/s30100011.
[21]  James, SW; Tatam, RP. Optical fibre long-period grating sensors: characteristics and application. Meas. Sci. Technol 2003, 14, R49–R61, doi:10.1088/0957-0233/14/5/201.
[22]  Rego, G; Okhotnikov, O; Dianov, E; Sulimov, V. High temperature stability of long-period fiber gratings produced using an electric arc. J. Lightwave Technol 2001, 19, 1574–1579, doi:10.1109/50.956145.
[23]  Patrick, H; Kersey, A; Bucholtz, F. Analysis of the response of long period fiber gratings to external index of refraction. J. Lightwave Technol 1998, 16, 1606–1612, doi:10.1109/50.712243.
[24]  Sparks, D; Smith, R; Straayer, M; Cripe, J; Schneider, R; Chimbayo, A; Anasari, S; Najafi, N. Measurement of density and chemical concentration using a microfluidic chip. Lab Chip 2003, 3, 19–21, doi:10.1039/b211429a. 15100800
[25]  Chin, LK; Liu, AQ; Zhang, JB; Lim, CS; Soh, YC. An on-chip liquid tunable grating using multiphase droplet microfluidics. Appl Phys Lett 2008, 93, 164107, doi:10.1063/1.3009560.
[26]  Chen, C-H; Tsao, T-C; Tang, J-L; Wu, W-T. A multi-d-shaped optical fiber for refractive index sensing. Sensors 2010, 10, 4794–4804, doi:10.3390/s100504794. 22399908
[27]  Vengsarkar, AM; Lemaire, PJ; Judkins, JB; Bhatia, V; Erdogan, T; Sipe, JE. Long-period fiber gratings as band-rejection filters. J. Lightwave Technol 1996, 14, 58–65, doi:10.1109/50.476137.
[28]  Guan, B-O; Tam, H-Y; Ho, S-L; Liu, S-Y; Dong, X-Y. Growth of long-period gratings in H2-loaded fiber after 193-nm UV inscription. IEEE Photonics Technol. Lett 2000, 12, 642–644, doi:10.1109/68.849070.
[29]  Blows, J; Tang, DY. Gratings written with tripled output of Q-switched Nd: YAG laser. Electron. Lett 2000, 36, 1837–1839, doi:10.1049/el:20001290.
[30]  Drozin, L; Fonjallaz, P-Y; Stensland, L. Long-period fibre gratings written by CO2 exposure of H2-loaded, standard fibres. Electron. Lett 2000, 36, 742–744, doi:10.1049/el:20000510.
[31]  Kondo, Y; Nouchi, K; Mitsuyu, T; Watanabe, M; Kazansky, PG; Hirao, K. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses. Opt. Lett 1999, 24, 646–648, doi:10.1364/OL.24.000646. 18073810
[32]  Palai, P; Satyanarayan, MN; Das, M; Thyagarajan, K; Pal, BP. Characterisation and simulation of long period gratings fabricated using electric discharge. Opt. Commun 2001, 193, 181–185, doi:10.1016/S0030-4018(01)01231-7.
[33]  Fujimaki, M; Ohki, Y; Brebner, JL; Roorda, S. Fabrication of long-period optical fiber gratings by use of ion implantation. Opt. Lett 2000, 25, 88–89, doi:10.1364/OL.25.000088. 18059791
[34]  Savin, S; Digonnet, MJF; Kino, GS; Shaw, HJ. Tunable mechanically induced long-period fiber gratings. Opt. Lett 2000, 25, 710–712, doi:10.1364/OL.25.000710. 18064159
[35]  Bey, SKAK; Lama, CCC; Suna, T; Grattana, KTV. Chloride ion optical sensing using a long period grating pair. Sens. Actuat. A 2008, 141, 390–395, doi:10.1016/j.sna.2007.10.024.
[36]  Falciai, R; Mignania, AG; Vanninia, A. Long period gratings as solution concentration sensors. Sens. Actuat. B 2001, 74, 74–77, doi:10.1016/S0925-4005(00)00714-0.
[37]  Tang, J-L; Wang, J-N. Chemical sensing sensitivity of long-period grating sensor enhanced by colloidal gold nanoparticles. Sensors 2008, 8, 171–184, doi:10.3390/s8010171.
[38]  Bhatia, V; Campbell, DK; Sherr, D; Tiffanie, GD; Noel, AZ; Gregory, A; Kent, AM; Clau, RO. Temperature-insensitive and strain-insensitive long-period gratings sensor for smart structures. Opt. Eng 1997, 36, 1872–1876, doi:10.1117/1.601379.
[39]  Bhatia, V; Tiffanie, GD; Noel, AZ; Clau, RO. Temperature-insensitive long-period grating for strain and refractive index sensing. Proc. SPIE 1997, 3042, 194–202.
[40]  Khaliq, S; James, SW; Tatam, RP. Fiber-optic liquid-level sensor using a long-period grating. Opt. Lett 2001, 26, 1224–1226, doi:10.1364/OL.26.001224. 18049567
[41]  Whitesides, GM. The origins and the future of microfluidics. Nature 2006, 442, 368–373, doi:10.1038/nature05058. 16871203
[42]  Stone, HA; Kim, S. Microfluidics: Basic issues, applications, and challenges. AIChE J 2001, 47, 1250–1254, doi:10.1002/aic.690470602.
[43]  Huang, CT; Jen, CP; Chao, TC; Wu, WT; Li, WY; Chau, LK. A novel design of grooved fibers for fiber-optic localized plasmon resonance biosensors. Sensors 2009, 9, 6456–6470, doi:10.3390/s90806456. 22454595
[44]  Rindorf, L; Hoiby, PE; Jensen, JB; Pedersen, LH; Bang, O; Geschke, O. Towards biochips using microstructured optical fiber sensors. Anal. Bioanal. Chem 2006, 385, 1370–1375, doi:10.1007/s00216-006-0480-8. 16761126
[45]  Rindorf, L; Jensen, JB; Dufva, M; Hoiby, PE; Pedersen, LH; Bang, O. Photonic crystal fiber long-period gratings for biochemical sensing. Opt. Express 2006, 14, 8224–8231, doi:10.1364/OE.14.008224. 19529196
[46]  Rindorf, L; Bang, O. Highly sensitive refractometer with a photonic-crystal-fiber long-period grating. Opt. Lett 2008, 33, 563–565, doi:10.1364/OL.33.000563. 18347710
[47]  Rindorf, L; Bang, O. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing. J. Opt. Soc. Am. B 2008, 25, 310–324, doi:10.1364/JOSAB.25.000310.
[48]  Sabatini, AM. A wavelet-based bootstrap method applied to inertial sensor stochastic error modelling using the Allan variance. Meas. Sci. Technol 2006, 17, 2980–2988, doi:10.1088/0957-0233/17/11/018.
[49]  IEEE Standard/952-1997. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros; 1997.
[50]  Stockwell, W. Bias Stability Measurement: Allan Variance; Crossbow Technology Inc: Milpitas, CA, USA, 2004.
[51]  Lee, BH; Liu, Y; Lee, SB; Choi, SS; Jang, JN. Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index. Opt. Lett 1997, 22, 1769–1771, doi:10.1364/OL.22.001769. 18188360
[52]  Hou, R; Ghassemlooy, Z; Hassan, A; Lu, C; Dowker, K. Modelling of long-period fibre grating response to refractive index higher than that of cladding. Meas. Sci. Technol 2001, 12, 1709–1713, doi:10.1088/0957-0233/12/10/314.
[53]  Yin, SZ; Chung, KW; Zhu, X. A highly sensitive long period grating based tunable filter using a unique double-cladding layer structure. Opt. Commun 2001, 188, 301–305, doi:10.1016/S0030-4018(00)01172-X.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133