全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Efficient Fuzzy C-Means Architecture for Image Segmentation

DOI: 10.3390/s110706697

Keywords: fuzzy c-means, image segmentation, fuzzy clustering, fuzzy hardware, FPGA, reconfigurable computing, system on programmable chip

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a novel VLSI architecture for image segmentation. The architecture is based on the fuzzy c-means algorithm with spatial constraint for reducing the misclassification rate. In the architecture, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. In addition, an efficient pipelined circuit is used for the updating process for accelerating the computational speed. Experimental results show that the the proposed circuit is an effective alternative for real-time image segmentation with low area cost and low misclassification rate.

References

[1]  Bezdek, JC. Fuzzy Mathematics in Pattern Classification; Cornell University: Ithaca, NY, USA, 1973.
[2]  Ahmed, MN; Yamany, SM; Mohamed, N; Farag, AA; Moriarty, T. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 2002, 21, 193–199, doi:10.1109/42.996338. 11989844
[3]  Chen, SC; Zhang, DQ. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. B 2004, 34, 1907–1916, doi:10.1109/TSMCB.2004.831165.
[4]  Chuang, KS; Tzeng, HL; Chen, S; Wu, J; Chen, TJ. Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graphics 2006, 30, 9–15, doi:10.1016/j.compmedimag.2005.10.001.
[5]  Cannon, R; Dave, J; Bezdek, J. Efficient implementation of the fuzzy c-means clustering algorithm. IEEE Trans. Pattern Anal. Mach. Intell 1986, 8, 248–255, doi:10.1109/TPAMI.1986.4767778. 21869343
[6]  Cheng, TW; Goldgof, DB; Hall, LO. Fast fuzzy clustering. Fuzzy Sets Syst 1998, 93, 49–56, doi:10.1016/S0165-0114(96)00232-1.
[7]  Eschrich, S; Ke, J; Hall, LO; Goldgof, DB. Fast accurate fuzzy clustering through data reduction. IEEE Trans. Fuzzy Syst 2003, 11, 262–270, doi:10.1109/TFUZZ.2003.809902.
[8]  Kolen, JF; Hutcheson, T. Reducing the time complexity of the fuzzy c-means algorithm. IEEE Trans. Fuzzy Syst 2002, 10, 263–267, doi:10.1109/91.995126.
[9]  Garcia-Lamont, J; Flores-Nava, LM; Gomez-Castaneda, F; Moreno-Cadenas, JA. CMOS analog circuit for fuzzy c-means clustering. Proceedings of 5th Biannual World Automation Congress, Orlando, FL, USA, 9–13 June 2002. Volume 13; pp. 462–467.
[10]  Lazaro, J; Arias, J; Martin, JL; Cuadrado, C; Astarloa, A. Implementation of a modified fuzzy c-means clustering algorithm for realtime applications. Microprocess. Microsyst 2005, 29, 375–380, doi:10.1016/j.micpro.2004.09.002.
[11]  Li, HY; Yang, CT; Hwang, WJ. Efficient vlsi architecture for fuzzy c-means clustering in reconfigurable hardware. Proceedings of The 4th International Conference on Frontier of Computer Science and Technology, Shanghai, China, 17–19 December 2009; pp. 168–174.
[12]  Hauck, S; Dehon, A. Reconfigurable Computing: The Theory and Practice of FPGA-Based Computing; Morgan Kaufmann: San Fransisco, CA, USA, 2008.
[13]  NIOS II Processor Reference Handbook; Altera Corporation: San Jose, CA, USA, 2011.
[14]  Hung, P; Fahmy, H; Mencer, O; Flynn, MJ. Fast division algorithm with a small lookup table. Proceedings of 32nd Asilomar Conference on Signal Systems and Computers, Pacific Grove, CA, USA, 1–4 November 1998; pp. 1465–1468.
[15]  Stratix II Device Handbook; Altera Corporation: San Jose, CA, USA, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133