全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

DOI: 10.3390/s110505416

Keywords: infrared position measurement, phase measurement, robots, sensors

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems.

References

[1]  Brncic, D; Sasaki, T; Hashimoto, H. Acting in Intelligent Space. Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, Zurich, Switzerland, 4–7 September 2007.
[2]  Lee, JH; Hashimoto, H. Intelligent Space. Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, 31 October–5 November 2000.
[3]  Lee, JH; Morioka, K; Ando, N; Hashimoto, H. Cooperation of distributed intelligent sensors in intelligent environment. IEEE/ASME Trans. Mechatron 2004, 9, 535–543, doi:10.1109/TMECH.2004.834655.
[4]  Rainier, M. The Challenges of Indoor Environments and Specification on some Alternative Positioning Systems. Proceedings of the IEEE 6th Workshop on Positioning, Navigation and Communication, Hannover, Germany, 19 March 2009.
[5]  Dedes, G; Dempster, AG. Indoor GPS Positioning. Proceedings of the IEEE Semiannual Vehicular Technology Conference, Dallas, TX, USA, 25–28 September 2005.
[6]  Ure?a, J; Hernández, A; Jiménez, A; Villadangos, JM; Mazo, M; García, JC; García, JJ; álvarez, FJ; de Marciani, C; Pérez, MC; et al. Advanced sensorial system for an acoustic LPS. Microproces. Microsys 2007, 31, 393–401, doi:10.1016/j.micpro.2007.02.003.
[7]  Kartowisastro, IH. Local Positioning System of a Mobile Robot: A Practical Perspective. Proceedings of the IEEE 9th International Conference on Control, Automation Robotics and Vision, Singapore, 5–8 December 2006.
[8]  Haake, IT; Nikolaidis, I; Gburzynski, P. A Scheme for Indoor Localization through RF Profiling. Proceedings of the IEEE International Conference on Communications, Dresden, Germany, 14–18 June 2009.
[9]  Mulloni, A; Wagner, D; Arakonyi, I; Schmalstieg, D. indoor positioning and navigation with camera phones. IEEE Pervasive Comput 2009, 8, 22–31.
[10]  Tiang, L; Chao, H; Wang, L; Chen, D; Meng, MQ-H. A Novel 5-Dimensional Indoor Localization Algorithm Based on RF Signal Strength. Proceedings of the IEEE International Conference on Automation and Logistics, Shenyang, China, 5–7 August 2009.
[11]  Izquierdo, F; Ciurana, M; Barceló, F; Paradells, J; Zola, E. Performance Evaluation of a TOA-based Trilateration Method to Locate Terminals in WLAN. Proceedings of the IEEE International Symposium in Wireless Pervasive Computing, Puchet, Thailand, 16–18 June 2006.
[12]  McGillem, CD; Rappaport, TS. Infra-red Location System for Navigation of Autonomous Vehicles. Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24–29 April 1988; 2, pp. 1236–1238.
[13]  Gustafsson, F; Gunnarsson, F. Positioning using Time-Difference of Arrival measurements. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Hong Kong, 6–10 April 2003.
[14]  Walworth, M; Mahajan, A. 3-D position sensing using the differences in the time-of-flight from a wave source to various receivers. IEEE Trans. Robot. Automat 2001, 17, 91–94, doi:10.1109/70.917087.
[15]  Paloj?ri, P; Ruotsalainen, T; Kostamovaara, J. A 250-MHz BiCMOS receiver channel with leading edge timing discriminator for a pulsed time-of-flight laser rangefinder. IEEE J. Solid-State Circuits 2005, 40, 1341–1349, doi:10.1109/JSSC.2005.848022.
[16]  Nissinen, I; Kostamovaara, J. On-chip voltage reference-based time-to-digital converter for pulsed time-of-flight laser radar measurements. IEEE Trans. Instrum. Meas 2009, 58, 1938–1948, doi:10.1109/TIM.2008.2005857.
[17]  Poujouly, S; Jourmet, B; Miller, D. Laser Range Finder based on Fully Digital Phase-Shift Measurement. Proceedings of the 16th IEEE International Conference on Instrumentation and Measurement Technology, Venice, Italy, 24–26 May 1999.
[18]  Poujouly, S; Journet, B. A twofold modulation frequency laser rangefinder. J. Opt. A-Pure Appl. Opt 2002, 4, 356–363, doi:10.1088/1464-4258/4/6/380.
[19]  Fernández, I. Sistema de posicionamiento absoluto de un robot móvil utilizando cámaras externasPh.D. Thesis, Electronics Department, University of Alcalá, Madrid, Spain. 2005.
[20]  Joo, C-K; Kim, Y-C; Choi, M-H; Ryoo, Y-J. Self localization for Intelligent Mobile Robot using Multiple Infrared Scanning System. Proceedings of the IEEE International Conference on Control, Automation and Systems, Seoul, Korea, 17–20 October 2007.
[21]  Jiménez, A; Hernández, A; Ure?a, J; Alonso, M; De Marziani, C; Pérez, MC; Mazo, M; Villadangos, JM; García, JJ; álvarez, F. FPGA-based Implementation of an Ultrasonic Beacon for a Local Positioning System. Proceedings of the IEEE International Annual Conference on Industrial Electronics, Control and Instrumentation, Paris, France, 7–10 November 2006.
[22]  Pérez, MC; Ure?a, J; Hernández, A; De Marziani, C; Jiménez, A; Villadangos, JM; álvarez, F. Ultrasonic Beacon-Based Local Positioning System Using Loosely Synchronous codes. Proceedings of the IEEE International Symposium on Intelligent Signal Processing,, Alcalá de Henares, Spain, 3–5 October 2007; 1, pp. 923–928.
[23]  Gorostiza, EM; Lázaro, JL; Martín, JL. LPS system based on fixed detectors. Proceedings of the Seminario Anual de Automática, Electrónica Industrial e Instrumentación, Matanzas, Cuba, 17–19 September 2001.
[24]  Martín-Gorostiza, E; Meca Meca, FJ; Lázaro Galilea, JL; Martos Naya, E; Naranjo, FB; Esteban, O. Coverage-mapping method based on a hardware model for mobile-robot positioning in intelligent spaces. IEEE Trans. Instrum. Meas 2010, 59, 266–282, doi:10.1109/TIM.2009.2023146.
[25]  Murphy, WS, Jr. Determination of a Position Using Approximate Distances and TrilaterationPh.D. Thesis, Faculty of the Colorado School of Mines, Golden, Colorado, USA. 2007.
[26]  Arshak, K; Adepoju, F. A Model for Estimating the Real-Time Positions of a Moving Object in Wireless Telemetry applications using RF Sensors. Proceedings of the IEEE Sensors and Applications Symposium, San Diego, CA, USA, 6–8 February 2007.
[27]  Boley, DL; Sutherland, KT. A rapidly converging recursive method for mobile robot localization. Int. J. Robot. Res 1998, 17, 1027–1039, doi:10.1177/027836499801701001.
[28]  de Marziani, C; Ure?a, J; Hernández, A; Mazo, M; García, JJ; Jiménez, A; Villadangos, JM; Pérez, MC; Ochoa, A; álvarez, F. Hardware Implementation of Acoustic Sensor Network for Relative Positioning System. Proceedings of the IEEE International Symposium on Industrial Electronics, Vigo, Spain, 4–7 June 2007.
[29]  Martín-Gorostiza, E; Meca Meca, FJ; Lázaro Galilea, JL; Salido Monzú, D; Pallarés Puerto, L; Moral Alcaraz, A. Error corrections in Phase-Shift Measurement for Robot Infrared Localization in Intelligent Spaces. Proceedings of the IEEE International Workshop on Robotics and Sensor Environments, Lecco, Italy, 6–7 November 2009.
[30]  Yang, H; Lu, C. Infrared wireless LAN using multiple optical sources. IEEE Proc-Optoelectron 2000, 147, 301–307, doi:10.1049/ip-opt:20000610.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133