全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

The Multi-Chamber Electronic Nose—An Improved Olfaction Sensor for Mobile Robotics

DOI: 10.3390/s110606145

Keywords: electronic nose, mobile robotic olfaction, gas sensing, Metal Oxide Semiconductor Sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

One of the major disadvantages of the use of Metal Oxide Semiconductor (MOS) technology as a transducer for electronic gas sensing devices (e-noses) is the long recovery period needed after each gas exposure. This severely restricts its usage in applications where the gas concentrations may change rapidly, as in mobile robotic olfaction, where allowing for sensor recovery forces the robot to move at a very low speed, almost incompatible with any practical robot operation. This paper describes the design of a new e-nose which overcomes, to a great extent, such a limitation. The proposed e-nose, called Multi-Chamber Electronic Nose (MCE-nose), comprises several identical sets of MOS sensors accommodated in separate chambers (four in our current prototype), which alternate between sensing and recovery states, providing, as a whole, a device capable of sensing changes in chemical concentrations faster. The utility and performance of the MCE-nose in mobile robotic olfaction is shown through several experiments involving rapid sensing of gas concentration and mobile robot gas mapping.

References

[1]  Bermak, A; Belhouari, SB; Shi, M; Martinez, D. Pattern recognition techniques for odor discrimination in gas sensor array. In Encyclopedia of Sensors; American Scientific Publisher: Stevenson Ranch, CA, USA, 2006; pp. 1–17.
[2]  Ampuero, S; Bosset, JO. The electronic nose applied to dairy products: A review. Sens. Actuat. B 2003, 94, 1–12, doi:10.1016/S0925-4005(03)00321-6.
[3]  Garcia, A; Aleixandre, A; Gutierrez, J; Horrillo, MC. Electronic nose for wine discrimination. Sens. Actuat. B 2006, 113, 911–916, doi:10.1016/j.snb.2005.03.078.
[4]  Nakamoto, T; Fukuda, A; Moriizumi, T. Perfume and flavor identification by odor-sensing system using quartz-resonator sensor array and neural-network pattern-recognition. Sens. Actuat. B 1993, 10, 85–90, doi:10.1016/0925-4005(93)80030-F.
[5]  Baby, RE; Cabezas, M; de Reca, ENW. Electronic nose: A useful tool for monitoring environmental contamination. Sens. Actuat. B 2000, 69, 214–218, doi:10.1016/S0925-4005(00)00491-3.
[6]  Trincavelli, M; Coradeschi, S; Loutfi, A; Soderquist, B; Thunberg, P. Direct Identification of Bacteria in Blood Culture Samples Using an Electronic Nose. IEEE Trans. Biomed. Eng 2010, 57, 2884–2890, doi:10.1109/TBME.2010.2049492. 20460199
[7]  Distante, C; Indiveri, G; Reina, G. An application of mobile robotics for olfactory monitoring of hazardous industrial sites. Ind. Robot 2009, 36, 51–59, doi:10.1108/01439910910924675.
[8]  Moseley, PT. Solid state gas sensors. Meas. Sci. Technol 1997, 8, 223–237, doi:10.1088/0957-0233/8/3/003.
[9]  Albert, KJ; Lewis, NS; Schauer, CL; Sotzing, GA; Stitzel, SE; Vaid, TP; Walt, DR. Cross-reactive chemical sensor arrays. Chem. Rev 2000, 100, 2595–2626, doi:10.1021/cr980102w. 11749297
[10]  Sberveglieri, G. Classical and novel techniques for the preparation of sno2 thin-film gas sensors. Sens. Actuat. B 1992, 6, 239–247, doi:10.1016/0925-4005(92)80062-3.
[11]  Samitier, J; Lopezvillegas, JM; Marco, S; Camara, L; Pardo, A; Ruiz, O; Morante, JR. A new method to analyze signal transients in chemical sensors. Sens. Actuat. B 1994, 18, 308–312, doi:10.1016/0925-4005(94)87099-3.
[12]  Nakamoto, T; Ishida, H; Moriizumi, T. An odor compass for localizing an odor source. Sens. Actuat. B 1996, 35, 32–36, doi:10.1016/S0925-4005(96)02009-6.
[13]  Yamanaka, T; Ishida, H; Nakamoto, T; Moriizumi, T. Analysis of gas sensor transient response by visualizing instantaneous gas concentration using smoke. Sens. Actuat. A 1998, 69, 77–81, doi:10.1016/S0924-4247(98)00045-4.
[14]  Loutfi, A; Coradeschi, S; Lilienthal, AJ; Gonzalez, J. Gas distribution mapping of multiple odour sources using a mobile robot. Robotica 2009, 27, 311–319, doi:10.1017/S0263574708004694.
[15]  Lilienthal, A; Duckett, T. Experimental analysis of gas-sensitive Braitenberg vehicles. Adv. Robot 2004, 18, 817–834, doi:10.1163/1568553041738103.
[16]  Ishida, H; Suetsugu, K; Nakamoto, T; Moriizumi, T. Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors. Sens. Actuat. A 1994, 45, 153–157, doi:10.1016/0924-4247(94)00829-9.
[17]  MobileRobots Inc, Available online: http://www.mobilerobots.com (accessed on 19 April 2011).
[18]  Gutierrez-Osuna, R. Pattern analysis for machine olfaction: A review. IEEE Sens. J 2002, 2, 189–202, doi:10.1109/JSEN.2002.800688.
[19]  Open Mobile Robot Arquitecture (OpenMORA). Available online: http://openmora.sourceforge.net (accessed on 19 April 2011).
[20]  Newman, PM. MOOS—Mission Orientated Operating Suite. Available online: http://www.robots.ox.ac.uk/~pnewman/papers/MOOS.pdf (accessed on 19 April 2011).
[21]  Blanco, JL. Mobile Robot Programming Toolkit (MRPT). Available online: http://www.mrpt.org/ (accessed on 19 April 2011).
[22]  Besl, PJ; McKay, ND. A method for registration of 3-D shapes. IEEE Trans. Patt. Anal. Mach. Int 1992, 14, 239–256, doi:10.1109/34.121791.
[23]  Lilienthal, AJ; Reggente, M; Trincavelli, M; Blanco, JL; Gonzalez, J. A statistical approach to gas distribution modelling with mobile robots—The Kernel DM+V algorithm. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), St. Louis, MO, USA, 11–15 October 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133