This work describes the analysis of different walking paths registered using a Light Detection And Ranging (LIDAR) laser range sensor in order to measure oscillating trajectories during unsupervised walking. The estimate of the gait and trajectory parameters were obtained with a terrestrial LIDAR placed 100 mm above the ground with the scanning plane parallel to the floor to measure the trajectory of the legs without attaching any markers or modifying the floor. Three different large walking experiments were performed to test the proposed measurement system with straight and oscillating trajectories. The main advantages of the proposed system are the possibility to measure several steps and obtain average gait parameters and the minimum infrastructure required. This measurement system enables the development of new ambulatory applications based on the analysis of the gait and the trajectory during a walk.
References
[1]
Brooks, P. Body Work; Harvard University Press: Cambridge, MA, USA, 1993.
[2]
Guyton, A. Function of the Human Body, 4th ed ed.; Saunders: Philadelphia, PA, USA, 1974.
[3]
Martorell, R. Body size, adaptation and function. Hum. Organ 1989, 48, 15–20.
[4]
Cutting, J; Kozlowski, L. Recognising friends by their walk: Gait perception without familiarity cues. Bull. Psychonomic Soc 1977, 9, 353–356.
[5]
Little, J; Boyd, J. Recognizing people by their gait: The shape of motion. Videre 1998, 1, 2–32.
[6]
Kozlowski, L; Cutting, J. Recognizing the sex of a walker from a dynamic point-light display. Percept. Psychophys 1977, 21, 575–580, doi:10.3758/BF03198740.
[7]
Agosto, E; Ajmar, A; Boccardo, P; Tonolo, FG; Lingua, A. Crime scene reconstruction using a fully geomatic approach. Sensors 2008, 8, 6280–6302, doi:10.3390/s8106280.
[8]
Petrofsky, J; Lee, S; Bweir, S. Gait characteristics in people with type 2 diabetes mellitus. Eur. J. Appl. Physiol 2005, 93, 640–647, doi:10.1007/s00421-004-1246-7. 15578207
[9]
Peterson, MGE; Kovar-Toledano, PA; Otis, JC; Allegrante, JP; Mackenzie, CR; Gutin, B; Kroll, MA. Effect of a walking program on gait characteristics in patients with osteoarthritis. Arthrit. Care Res 1993, 6, 11–16, doi:10.1002/art.1790060104.
[10]
Lim, I; Wegen, E; Goede, C; Deutekom, M; Nieuwboer, A; Willems, A; Jones, D; Rochester, L; Kwakkel, G. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: A systematic review. Clin. Rehabil 2005, 19, 695–713, doi:10.1191/0269215505cr906oa. 16250189
[11]
Morris, ME. Movement disorders in people with Parkinson disease: A model for physical therapy. Phys. Ther 2000, 80, 578–597. 10842411
[12]
Morris, ME; Iansek, R; Matyas, TA; Summers, JJ. The pathognesis of gait hypokinesia in Parkinson’s disease. Brain 1994, 117, 1169–1181, doi:10.1093/brain/117.5.1169. 7953597
[13]
Morris, ME; Iansek, R; Matyas, TA; Summers, J. Abnormalities in the stride length-cadence relation in parkinsonian gait. Movement Disord 1998, 13, 61–69, doi:10.1002/mds.870130115. 9452328
[14]
Barak, Y; Wagenaar, R; Holt, K. Gait characteristics of elderly people with a history of falls: A dynamic approach. Phys. Ther 2006, 86, 1501–1510, doi:10.2522/ptj.20050387. 17079750
[15]
Hausdorff, JM; Rios, DA; Edelberg, HK. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch. Phys. Med. Rehabil 2001, 82, 1050–1056, doi:10.1053/apmr.2001.24893. 11494184
[16]
Kyriazis, V. Gait analysis techniques. J. Orthopaed. Traumatol 2001, 1, 1–6.
[17]
Lee, L; Grimson, WEL. Gait Analysis for Recognition and Classification. Proceedings of 5th IEEE International Conference on Automatic Face and Gesture Recognition, Washington, DC, USA, 20–21 May 2002; pp. 148–155.
[18]
Windolf, M; G?tzen, N; Morlock, M. Systematic accuracy and precision analysis of video motion capturing systems—exemplified on the Vicon-460 systen. Gait analysis for recognition and classification. J. Biomech 2008, 41, 537–542.
[19]
Mayagoitia, RE; Nene, AV; Veltink, PH. Accelerometer and rate gyroscope measurement of kinematics: An inexpensive alternative to optical motion analysis systems. J. Biomech 2002, 35, 537–542, doi:10.1016/S0021-9290(01)00231-7. 11934425
[20]
Catalfamo, P; Ghoussayni, S; Ewins, D. Gait event detection on level ground and incline walking using a rate gyroscope. Sensors 2010, 10, 5683–5702, doi:10.3390/s100605683. 22219682
[21]
Goodwin, J; Clark, C; Deakes, J; Burdon, D; Lawrence, C. Clinical methods of goniometry: A comparative study. Disabil. Rehabil 1992, 14, 10–15, doi:10.3109/09638289209166420. 1586755
[22]
Breger-Lee, D; Voelker, ET; Giurintano, D; Novick, A; Browder, L. Reliability of torque range of motion: A preliminary study. J. Hand Ther 1993, 6, 29–34, doi:10.1016/S0894-1130(12)80178-5. 8343872
[23]
Rome, K; Cowieson, F. A reliability study of the universal goniometer, fluid goniometer, and electrogoniometer for the measurement of ankle dorsiflexion. Foot Ankle Int 1996, 17, 28–32. 8821283
Qian, G; Zhang, J; Kidane, A. People identification using gait via floor pressure sensing and analysis. Proceedings of the 3rd European Conference on Smart Sensing and Context, Zurich, Switzerland, 29–31 October 2008. In ; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5279, 83–98.
[26]
Menz, HB; Latt, MD; Tiedemann, A; Mun San Kwan, M; Lord, SR. Reliability of the GAITRite? walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture 2004, 20, 20–25, doi:10.1016/S0966-6362(03)00068-7. 15196515
[27]
Wang, L. Abnormal walking gait analysis using silhouette-masked flow histograms. Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, 20–24 August 2006; pp. 473–476.
[28]
Cunado, D; Nash, M; Nixon, MS; Carter, JN. Gait extraction and description by evidence-gathering. In Proceedings of the 2nd International Conference on Audio- and Video-Based Biometric Person Authentication AVBPA99, Washington, DC, USA, 22–24 March 1999; pp. 43–48.
[29]
Webster, K; Wittwer, J; Feller, J. Validity of the GAITRite? walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture 2005, 4, 317–321.
[30]
Murray, MP; Drought, AB. Walking patterns of normal men. J. Bone Joint Surg 1964, 46, 335–360. 14129683
[31]
Kubo, T; Sakata, Y; Matsunaga, T; Koshimune, A; Sakai, S; Ameno, K; Ijiri, I. Analysis of body sway pattern after alcohol ingestion in human subjects. Acta Oto-Laryngol 1989, 468, 247–252.
[32]
Jansen, EC; Thyssen, HH; Brynskov, J. Gait analysis after intake of increasing amounts of alcohol. Z. Rechtsmed 1985, 94, 103–107. 4002879
[33]
Noda, M; Demura, S; Yamaji, S; Kitabayashi, T. Influence of alcohol intake on the parameters evaluating the body center of foot pressure in a static upright posture. Percept. Mot. Skills 2004, 98, 873–888, doi:10.2466/pms.98.3.873-887. 15209303
[34]
Demura, S; Uchiyama, M. Influence of moderate alcohol ingestion on gait. Sport Sci. Health 2008, 4, 21–26, doi:10.1007/s11332-008-0062-6.
[35]
Dr?ger. Dr?ger: Luebeck, Germany, 2010.
[36]
Farjas, M; Sillero-Quintana, M; Merino, PA. Applying topographic techniques to modeling the human shape in motion. Proceedings of 2nd Workshop on Digital Media and its Application in Museum & Heritages, Chongqing, China, 10–12 December 2007; pp. 169–172.
[37]
Gate, G; Nashashibi, F. Using targets appearance to improve pedestrian classification with a laser scanner. Proceedings of IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008; pp. 571–576.
[38]
Vázquez-Martín, R; Nú?ez, P; Bandera, A; Sandoval, F. Curvature-based environment description for robot navigation using laser range sensors. Sensors 2009, 9, 5894–5918, doi:10.3390/s90805894. 22461732
[39]
Palleja, T; Teixido, M; Tresanchez, M; Palacin, J. Measuring gait using a ground laser range sensor. Sensors 2009, 9, 9133–9146, doi:10.3390/s91109133. 22291558
[40]
Hokuyo Automatic Co. Ltd. Scanning Laser Range Finder UTM-30LX/LN Specification. Drawing No. C-42-3615; Hokuyo Automatic Co. Ltd: Osaka, Japan, 2008.