Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors.
References
[1]
Dong, X; Xie, Y. System-Level Cost Analysis and Design Exploration for Three-Dimensional Integrated Circuits (3D ICs). Proceedings of 14th Asia and South Pacific IEEE Design and Automation conference (ASP-DAC 2009), Yokohama, Japan, 19–22 January 2009; pp. 234–241.
[2]
Davis, WR; Wilson, J; Mick, S; Xu, J; Hua, H; Mineo, C; Sule, AM; Steer, M; Franzon, PD. Demystifying 3D ICs: The Pros and Cons of Going Vertical. IEEE Design Test Comput 2005, 22, 498–510, doi:10.1109/MDT.2005.136.
[3]
Wong, H. Technology and Device Scaling Considerations for CMOS Imagers. IEEE Trans. Electron Dev 1996, 43, 2131–2142, doi:10.1109/16.544384.
[4]
Felix, P; Moulin, M; Portmann, J; Reboull, JP. CCD Readout of Infrared Hybrid Focal-Plane Arrays. IEEE Trans. Electron Dev 1980, 27, 175–188, doi:10.1109/T-ED.1980.19837.
[5]
Bajaj, J. State-of-the-Art HgCdTe Infrared Devices. Proc. SPIE 2000, 3948, 42–54.
[6]
Benthien, S; Lule, T; Schneider, B; Wagner, M; Verhoeven, M; Bohm, M. Vertically Integrated Sensors for Advanced Imaging Applications. IEEE J. Solid-State Circ 2000, 35, 939–945, doi:10.1109/4.848201.
[7]
Bai, Y; Bernd, SG; Hasack, JR; Farris, MC; Montroy, JT; Bajaj, J. Hybrid CMOS Focal Plane Array with Extended UV and NIR Response for Space Applications. Proc. SPIE 2004, 5167, 83–93.
Aziz, JNY; Abdelhalim, K; Shulyzki, R; Genov, R; Bardakjian, BL; Derchansky, M; Serletis, D; Carlen, PL. 256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes. IEEE J. Solid-State Circ 2009, 44, 995–1005, doi:10.1109/JSSC.2008.2010997.
[10]
Izadi, MH; Tousignant, O; Mokam, MF; Karim, KS. An a-Si Active Pixel Sensor (APS) Array for Medical X-ray Imaging. IEEE Trans. Electron Dev 2010, 57, 3020–3026, doi:10.1109/TED.2010.2069010.
[11]
Jerominek, H; Pope, TD; Alain, C; Zhang, R; Lehoux, M; Picard, F; Fuchs, RW; Grenier, C; Rouleau, Y; Cayer, F; Savard, S; Bilodeau, G; Couillard, JF; Larouche, C. 128 × 128 Pixel Uncooled Bolometric FPA for IR Detection and Imaging. Proc. SPIE 1998, 3436, 585–592.
[12]
Marchese, L; Bolduc, M; Tremblay, B; Doucet, M; Oulachgar, H; Noc, LL; Williamson, F; Alain, C; Jerominek, H; Bergeron, A. A Microbolometer-Based THz Imager. Proc. SPIE 2010, 7671, 1–8.
[13]
Skorka, O; Joseph, D. Design and Fabrication of a VI-CMOS Image Sensor. CMC Appl Note 2010, 1–17.
Ohta, J. Smart CMOS Image Sensors and Applications; CRC Press: Boca Raton, FL, USA, 2008.
[18]
Mahmoodi, A; Joseph, D. Pixel-Level Delta-Sigma ADC with Optimized Area and Power for Vertically-Integrated Image Sensors. Proceedings of 51st IEEE Midwest Symposium on Circuits and Systems (MWSCAS 2008), Knoxville, TN, USA, 10–13 August 2008; pp. 41–44.
[19]
Yang, DXD; Fowler, B; Gamal, AE. A Nyquist-Rate Pixel-Level ADC for CMOS Image Sensors. IEEE J. Solid-State Circ 1999, 34, 348–356, doi:10.1109/4.748186.
[20]
Schneider, B; Fischer, H; Benthien, S; Keller, H; Lule, T; Rieve, P; Sommer, M; Schulte, J; Bohm, M. TFA Image Sensors: From the One Transistor Cell to a Locally Adaptive High Dynamic Range Sensor. Proceedings of IEDM ’97 International Electron Devices Meeting of Technical Digest, Washington, DC, USA, 7–10 December 1997; pp. 209–212.
[21]
Skorka, O; Joseph, D. Reducing Crosstalk in Vertically-Integrated CMOS Image Sensors. Proc SPIE 2010, 7536, 75360N:1–75360N:13.
[22]
Kaye, GWC; Laby, TH. Tables of Physical and Chemical Constants; Longman: London, UK, 2010. Chapter 2.3.5 Thermal Expansion..
[23]
Meiss, J; Allinger, N; Falkenberg, C; Leo, K; Riede, M. Transparent Conductive Layers for Organic Solar Cells—Simulation and Experiment. Proc SPIE 2009, 7416, 741603:1–741603:10.
[24]
Kar, S; Varghese, R; Bhattacharya, S. Electrical, Optical, and Structural Properties of Semitransparent Metallic Layers. J. Vac. Sci. Tech. A 1983, 1, 1420–1424, doi:10.1116/1.572033.
[25]
OConnor, B; Haughn, C; An, KH; Pipe, KP; Shtein, M. Transparent and Conductive Electrodes Based on Unpatterned Thin Metal Films. Appl Phys Lett 2008, 93, 223304:1–223304:3.
[26]
Wager, JF; Keszler, DA; Presley, RE. Transparent Electronics; Springer: New York, NY, USA, 2008.
[27]
Minami, T. Transparent Conducting Oxide Semiconductors for Transparent Electrodes. Semicond. Sci. Technol 2005, 20, S35–S44, doi:10.1088/0268-1242/20/4/004.
[28]
Thestrup, B; Schou, J. Transparent Conducting AZO and ITO Films Produced by Pulsed Laser Ablation at 355 nm. Appl. Phys. A 1999, 69, S807–S810, doi:10.1007/s003390051535.
[29]
Chang, YM; Wang, L; Su, WF. Polymer Solar Cells with Poly(3,4-ethylenedioxythiophene) as Transparent Anode. Org. Electron 2008, 9, 968–973, doi:10.1016/j.orgel.2008.07.003.
[30]
Sangeeth, CSS; Jaiswal, M; Menon, R. Charge Transport in Transparent Conductors: A Comparison. J Appl Phys 2009, 105, 063713:1–063713:6.
[31]
Meyer-Friedrichsen, T; Elschner, A; Keohan, F; Lovenich, W; Ponomarenko, SA. Conductors and Semiconductors for Advanced Organic Electronics. Proc SPIE 2009, 7417, 741704:1–741704:9.
[32]
Barnes, TM; Wu, X; Zhou, J; Duda, A; van de Lagemaat, J; Coutts, TJ; Weeks, CL; Britz, DA; Glatkowski, P. Single-Wall Carbon Nanotube Networks as a Transparent Back Contact in CdTe Solar Cells. Appl Phys Lett 2007, 90, 243503:1–243503:3.
Paul, S; Kim, DW. Preparation and Characterization of Highly Conductive Transparent Films with Single-Walled Carbon Nanotubes for Flexible Display Applications. Carbon 2009, 47, 2436–2441, doi:10.1016/j.carbon.2009.04.045.
[35]
Geng, HZ; Kim, KK; Lee, YH. Recent Progresses in Carbon Nanotube-Based Flexible Transparent Conducting Film. Proc SPIE 2008, 7037, 70370A:1–70370A:14.
[36]
Skorka, O; Sirbu, D; Joseph, D. Optimization of Photodetector Thickness in Vertically-Integrated Image Sensors. Proc SPIE 2009, 7249, 72490O:1–72490O:12.
[37]
Bhattacharya, P. Semiconductor Optoelectronic Devices; Prentice Hall: Upper Saddle River, NJ, USA, 1994.
[38]
Guerrieri, F; Tisa, S; Tosi, A; Zappa, F. Single-Photon Camera for High-Sensitivity High-Speed Applications. Proc SPIE 2010, 7536, 753605:1–753605:10.
[39]
Liu, HC; Song, CY; Shen, A; Gao, M; Wasilewski, ZR; Buchanan, M. GaAs/AlGaAs Quantum-Well Photodetector for Visible and Middle Infrared Dual-Band Detection. Appl. Phys. Lett 2000, 77, 2437–2439, doi:10.1063/1.1318232.
[40]
Roberts, J; Parker, C; Muth, J; Leboeuf, S; Aumer, M; Bedair, S; Reed, M. Ultraviolet-Visible Metal-Semiconductor-Metal Photodetectors Fabricated from InxGa1-xN (0 < x < 0.13). J. Electron. Mater 2002, 31, L1–L6, doi:10.1007/s11664-002-0179-3.
[41]
Chorier, P; Tribolet, P; Destefanis, G. From Visible to Infrared, a New Detector Approach. Proc SPIE 2006, 6206, 620601:1–620601:12.
[42]
Kasap, SO; Kabir, MZ; Rowlands, JA. Recent Advances in X-ray Photoconductors for Direct Conversion X-ray Image Detectors. Curr. Appl. Phys 2006, 6, 288–292, doi:10.1016/j.cap.2005.11.001.
[43]
Suzuki, Y; Yamaguchi, H; Oonuki, K; Okamura, Y; Okano, K. Amorphous Selenium Photodetector Driven by Diamond Cold Cathode. IEEE Electron Dev. Lett 2003, 24, 16–18, doi:10.1109/LED.2002.807018.
[44]
Forrest, SR. Active Optoelectronics Using Thin-Film Organic Semiconductors. IEEE J. Sel. Top. Quant. Electron 2000, 6, 1072–1083, doi:10.1109/2944.902156.
[45]
Gao, J; Hegmann, FA. Bulk photoconductive gain in pentacene thin films. Appl Phys Lett 2008, 93, 223306:1–223306:3.
[46]
Gong, X; Tong, M; Xia, Y; Cai, W; Moon, JS; Cao, Y; Yu, G; Shieh, CL; Nilsson, B; Heeger, AJ. High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1,450 nm. Science 2009, 325, 1665–1667, doi:10.1126/science.1176706. 19679770
[47]
Sahu, S; Pal, AJ. Multifunctionality of Organic Devices: Light Emission, Photovoltage Generation, and Photodetection. J. Phys. Chem. C 2008, 112, 8446–8451.
[48]
Bai, Y; Bajaj, J; Beletic, JW; Farris, MC; Joshi, A; Lauxtermann, S; Petersen, A; Williams, G. Teledyne Imaging Sensors: Silicon CMOS Imaging Technologies for X-ray, UV, Visible and Near Infrared. Proc SPIE 2008, 7021(702102).
[49]
Ker, MD; Peng, JJ; Jiang, HC. Active Device under Bond Pad to Save I/O Layout for High-pin-count SOC. Proceedings of the Fourth International Symposium on Quality Electronic Design (ISQED’03), San Jose, CA, USA, March 2003; pp. 241–246.
[50]
Chan, IM; Hong, FCN. Plasma Treatments of Indium Tin Oxide Anodes in Carbon Tetrafluorinde (CF4)/Oxygen (O2) to Improve the Performance of Organic Light-Emitting Diodes. Thin Solid Films 2003, 444, 254–259.
[51]
Chang, KL; Yeh, CF. The Effect of Temperature on I-V Characteristics of a-Si:H Photodiode. Jpn. J. Appl. Phys 1992, 31, L1226–L1228.
[52]
Hu, J; Gordon, RG. Textured Aluminum-Doped Zinc Oxide Thin Films from Atmospheric Pressure Chemical-Vapor Deposition. J. Appl. Phys 1992, 71, 880–890.
[53]
Banerjee, R; Ray, S; Basu, N; Batabyal, AK; Barua, AK. Degradation of Tin-Doped Indium-Oxide Film in Hydrogen and Argon Plasma. J. Appl. Phys 1987, 62, 912–916.
[54]
Drevillon, B; Kumar, S; Cabarrocas, PRI; Siefert, JM. In Situ Investigation of the Optoelectronic Properties of Transparent Conducting Oxide/Amorphous Silicon Interfaces. Appl. Phys. Lett 1989, 54, 2088–2090.
[55]
Jellison, JGE. Optical Functions of Silicon Determined by Two-Channel Polarization Modulation Ellipsometry. Opt. Mater 1992, 1, 41–47.
[56]
Piller, H. Silicon (Amorphous). In Handbook of Optical Constants of Solids; Palik, ED, Ed.; Academic Press: Orlando, FL, USA, 1985.
[57]
Reeves, GK; Harrison, HB. Obtaining the Specific Contact Resistance from Transmission Line Model Measurements. IEEE Electron Dev. Lett 1982, 3, 111–113.
[58]
Haque, MS; Naseem, HA; Brown, WD. Interaction of Aluminum with Hydrogenated Amorphous Silicon at Low Temperatures. J. Appl. Phys 1994, 75, 3928–3935.
[59]
Thomas, JMD. Conductivity of Undoped GD a-Si:H. In Properties of Amorphous Silicon; Brodsky, MH, Ed.; INSPEC, Institution of Electrical Engineers: London, UK, 1985.
[60]
Staebler, D; Wronski, CR. Reversible Conductivity Changes in Discharge-Produced Amorphous Si. Appl. Phys. Lett 1977, 31, 292–294.
[61]
Stutzmann, M; Jackson, WB; Tsai, CC. Light-Induced Metastable Defects in Hydrogenated Amorphous Silicon: A Systematic Study. Phys. Rev. B 1985, 32, 23–47.
[62]
Skorka, O; Joseph, D. Design and Fabrication of Bond Pads for Flip-Chip Bonding of Custom Dies to CMOS Dies. CMC Appl Note 2009, 1–14.
[63]
Hecht, S. The Visual Discrimination of Intensity and the Weber-Fechner Law. J. Gen. Physiol 1924, 7, 235–267. 19872133
[64]
Helander, MG; Landauer, TK; Prabhu, PV. Handbook of Human-Computer Interaction, 2nd ed ed.; 1997. Chapter 25..
[65]
Spivak, A; Belenky, A; Fish, A; Yadid-Pecht, O. Wide-Dynamic-Range CMOS Image Sensors—Comparative Performance Analysis. IEEE Trans. Electron Dev 2009, 56, 2446–2461.
[66]
Jansick, J. Lux Transfer: Complementary Metal Oxide Semiconductors versus Charge-Coupled Devices. Opt. Eng 2002, 41, 1203–1215.
[67]
Hoefflinger, B. High-Dynamic-Range (HDR) Vision; Springer: Berlin, Germany, 2007.
[68]
Mahmoodi, A. Low-Area Low-Power Delta-Sigma Column and Pixel Sensors; University of Alberta: Edmonton, AB, Canada, 2011.