全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Electromechanical Impedance Response of a Cracked Timoshenko Beam

DOI: 10.3390/s110707285

Keywords: electromechanical impedance, structural health monitoring, PZT, Timoshenko beam

Full-Text   Cite this paper   Add to My Lib

Abstract:

Typically, the Electromechanical Impedance (EMI) technique does not use an analytical model for basic damage identification. However, an accurate model is necessary for getting more information about any damage. In this paper, an EMI model is presented for predicting the electromechanical impedance of a cracked beam structure quantitatively. A coupled system of a cracked Timoshenko beam with a pair of PZT patches bonded on the top and bottom surfaces has been considered, where the bonding layers are assumed as a Kelvin-Voigt material. The shear lag model is introduced to describe the load transfer between the PZT patches and the beam structure. The beam crack is simulated as a massless torsional spring; the dynamic equations of the coupled system are derived, which include the crack information and the inertial forces of both PZT patches and adhesive layers. According to the boundary conditions and continuity conditions, the analytical expression of the admittance of PZT patch is obtained. In the case study, the influences of crack and the inertial forces of PZT patches are analyzed. The results show that: (1) the inertial forces affects significantly in high frequency band; and (2) the use of appropriate frequency range can improve the accuracy of damage identification.

References

[1]  Park, G; Sohn, H; Farrar, CR; Inman, DJ. Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vib. Dig 2003, 35, 451–463, doi:10.1177/05831024030356001.
[2]  Giurgiutiu, V; Reynolds, A; Rogers, CA. Experimental investigation of E/M impedance health monitoring for spot welded structural joints. J. Intell. Mater. Syst. Struct 1999, 10, 802–812.
[3]  Park, G; Rutherford, AC; Sohn, H; Farrar, CR. An outlier analysis framework for impedance-based structural health monitoring. J. Sound Vib 2005, 286, 229–250, doi:10.1016/j.jsv.2004.10.013.
[4]  Ayres, JW; Lalande, F; Chaudhry, Z; Rogers, CA. Qualitative impedance-based health monitoring of civil infrastructures. Smart Mater. Struct 1998, 7, 599–605, doi:10.1088/0964-1726/7/5/004.
[5]  Park, G; Cudney, HH; Inman, DJ. Feasibility of using impedance-based damage assessment for pipeline structures. Earthquake Eng. Struc. Dynam 2001, 30, 1463–1474, doi:10.1002/eqe.72.
[6]  Giurgiutiu, V; Zagrai, A. Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method. Struct. Health Monit 2005, 4, 99–118, doi:10.1177/1475921705049752.
[7]  Xing, KJ; Fritzen, CP. Monitoring of growing fatigue damage using the E/M impedance method. Key Eng. Mater 2007, 347, 153–158, doi:10.4028/www.scientific.net/KEM.347.153.
[8]  Shin, SW; Oh, TK. Application of electro-mechanical impedance sensing technique for online monitoring of strength development in concrete using smart PZT patches. Constr. Build. Mater 2009, 23, 1185–1188, doi:10.1016/j.conbuildmat.2008.02.017.
[9]  Mourna, JD; Steffen, V. Impedance-based health monitoring for aeronautic structures using statistical meta-modeling. J. Intell. Mater. Syst. Struct 2006, 17, 1023–1036, doi:10.1177/1045389X06063087.
[10]  Daniel, MP. High Frequency Modeling and Experimental Analysis for Implementation of Impedance-Based Structural Health MonitoringPhD Thesis, The Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2006.
[11]  Liang, C; Sun, FP; Rogers, CA. Coupled electromechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer. J. Intell. Mater. Syst. Struct 1994, 5, 12–20, doi:10.1177/1045389X9400500102.
[12]  Zhou, SW; Liang, C; Rogers, CA. An impedance-based system modeling approach for induced strain actuator-driven structures. J. Vib. Acoust 1996, 118, 323–331, doi:10.1115/1.2888185.
[13]  Bhalla, S; Soh, CK. Structural health monitoring by piezo-impedance transducers. I. Modeling. J. Aerosp. Eng 2004, 17, 154–165, doi:10.1061/(ASCE)0893-1321(2004)17:4(154).
[14]  Bhalla, S; Soh, CK. Structural health monitoring by piezo-impedance transducers. II. Applications. J. Aerosp. Eng 2004, 17, 166–175, doi:10.1061/(ASCE)0893-1321(2004)17:4(166).
[15]  Yang, YW; Xu, JF; Soh, CK. Generic impedance-based model for structure-piezoceramic interacting system. J. Aerosp. Eng 2005, 18, 93–101, doi:10.1061/(ASCE)0893-1321(2005)18:2(93).
[16]  Annamdas, VGM; Soh, CK. An electromechanical impedance model of a piezoceramic transducer-structure in the presence of thick adhesive bonding. Smart Mater. Struct 2007, 16, 673–686, doi:10.1088/0964-1726/16/3/014.
[17]  Annamdas, VGM; Soh, CK. Three-dimensional electromechanical impedance model for multiple piezoceramic transducers-structure interaction. J. Aerosp. Eng 2008, 21, 35–44, doi:10.1061/(ASCE)0893-1321(2008)21:1(35).
[18]  Crawley, EF; de Luis, J. Use of piezoelectric actuators as elements of intelligent structures. AIAA J 1987, 25, 1373–1385, doi:10.2514/3.9792.
[19]  Qing, XP; Chan, HL; Beard, SJ; Ooi, TK; Marotta, SA. Effect of adhesive on the performance of piezoelectric elements used to monitor structural health. Int. J. Adhes. Adhes 2006, 26, 622–628, doi:10.1016/j.ijadhadh.2005.10.002.
[20]  Wang, XD; Huang, GL. Wave propagation in electro-mechanical structures: induced by surface-bonded piezoelectric actuators. J. Intell. Mater. Syst. Struct 2001, 12, 105–115.
[21]  Wang, XD; Huang, GL. The coupled dynamic behavior of piezoelectric sensors bonded to elastic media. J. Intell. Mater. Syst. Struct 2006, 17, 883–894, doi:10.1177/1045389X06061130.
[22]  Pietrzakowski, M. Active damping of beams by piezoelectric system: Effects of bonding layer properties. Int. J. Solids Struct 2001, 38, 7885–7897, doi:10.1016/S0020-7683(01)00105-6.
[23]  Ong, CW; Yang, YW; Wong, YT; Bhalla, S; Lu, Y; Soh, CK. The effects of adhesive on the electro-mechanical response of a piezoceramic transducer coupled smart system. Proc. SPIE 2003, 5062, 241–247.
[24]  Bhalla, S; Kumar, P; Gupta, A; Datta, TK. Simplified impedance model for adhesively bonded piezo-impedance transducers. J. Aerosp. Eng 2009, 22, 373–382, doi:10.1061/(ASCE)0893-1321(2009)22:4(373).
[25]  Yan, W; Lim, CW; Cai, JB; Chen, WQ. An electromechanical impedance approach for quantitative damage detection in Timoshenko beams with piezoelectric patches. Smart Mater. Struct 2007, 16, 1390–1400, doi:10.1088/0964-1726/16/4/054.
[26]  Yan, W; Lim, CW; Chen, WQ; Cai, JB. Modeling of EMI response of damaged Mindlin-Herrmann rod. Int. J. Mech. Sci 2007, 49, 1355–1365, doi:10.1016/j.ijmecsci.2007.04.007.
[27]  Naidu, ASK; Soh, CK. Identifying damage location with admittance signatures of smart piezo-transducers. J Intell Mater Syst Struct 2004, 15, 627–642, doi:10.1177/1045389X04043269.
[28]  Tseng, KKH; Wang, L. Impedance-based method for nondestructive damage identification. J. Aerosp. Eng 2005, 131, 58–64.
[29]  Yang, YW; Hu, Y. Electromechanical impedance modeling of PZT transducers for health monitoring of cylindrical shell structures. Smart Mater. Struct 2008, 17, 015005, doi:10.1088/0964-1726/17/01/015005.
[30]  Xu, JF; Yang, YW; Soh, CK. Electromechanical impedance-based structural health monitoring with evolutionary programming. J. Aerosp. Eng 2004, 17, 182–193, doi:10.1061/(ASCE)0893-1321(2004)17:4(182).
[31]  Chondros, TG; Dimarogonas, AD; Yao, J. A continuous cracked beam vibration theory. J. Sound Vibra 1998, 215, 17–34, doi:10.1006/jsvi.1998.1640.
[32]  Wang, DS; Zhu, HP; Jin, K; Chen, XQ. Impedance analysis and damage detection on piezoelectric smart beam. Chin. J. Solid Mech 2008, 29, 402–407.
[33]  Kuang, YD. Study on the Electro-Mechanical Characteristics of the Piezoelectric-Actuated Non-Cracked and Cracked BeamsPh.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 2007.
[34]  Liu, W; Giurgiutiu, V. Finite element simulation of piezoelectric wafer active sensors for structural health monitoring with coupled-field elements. Proc. SPIE 2007, 6529, 715–726.
[35]  Yang, YW; Lim, YY; Soh, CK. Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures: II. Numerical verification. Smart Mater. Struct 2008, 17, 035009, doi:10.1088/0964-1726/17/3/035009.
[36]  Yang, YW; Hu, YH; Lu, Y. Sensitivity of PZT impedance sensors for damage detection of concrete structures. Sensors 2008, 8, 327–346, doi:10.3390/s8010327.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133