全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Biofunctionalized Zinc Oxide Field Effect Transistors for Selective Sensing of Riboflavin with Current Modulation

DOI: 10.3390/s110706645

Keywords: aptamer, biomolecular detection, ZnO-FET, sensor, riboflavin, selectivity, label-free, biofunctionalization

Full-Text   Cite this paper   Add to My Lib

Abstract:

Zinc oxide field effect transistors (ZnO-FET), covalently functionalized with single stranded DNA aptamers, provide a highly selective platform for label-free small molecule sensing. The nanostructured surface morphology of ZnO provides high sensitivity and room temperature deposition allows for a wide array of substrate types. Herein we demonstrate the selective detection of riboflavin down to the pM level in aqueous solution using the negative electrical current response of the ZnO-FET by covalently attaching a riboflavin binding aptamer to the surface. The response of the biofunctionalized ZnO-FET was tuned by attaching a redox tag (ferrocene) to the 3’ terminus of the aptamer, resulting in positive current modulation upon exposure to riboflavin down to pM levels.

References

[1]  Someya, T; Small, J; Kim, P; Nuckolls, C; Yardley, J. Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett 2003, 3, 877–881.
[2]  Star, A; Han, TR; Gabrien, JC; Bradley, K; Gruner, G. Interaction of aromatic compounds with carbon nanotubes: Correlation to the Hammett parameter of the substituent and measured carbon nanotube FET response. Nano Lett 2003, 3, 1421–1423.
[3]  Tsukada, K; Kiwa, T; Yamaguchi, T; Migitaka, S; Goto, Y; Yokosawa, K. A study of fast response characteristics for hydrogen sensing with platinum FET sensor. Sens. Actuat. B 2006, 114, 158–163.
[4]  Kolmakov, A; Moskovits, M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res 2004, 34, 151–180.
[5]  Janata, J; Josowicz, M. Conducting polymers in electronic chemical sensors. Nature 2003, 2, 19–24.
[6]  Gerard, M; Chaubey, A; Malhotra, BD. Application of conducting polymers to biosensors. Biosens. Bioelectron 2001, 17, 345–359.
[7]  Fang, Q; Chetwynd, D; Covington, J; Toh, C; Gardner, J. Micro-gas-sensor with conducting polymers. Sens. Actuat. B 2002, 84, 66–71.
[8]  Covington, J; Gardner, J; Briand, D; de Rooij, N. A polymer gate FET sensor array for detecting organic vapours. Sens. Actuat. B 2001, 77, 155–162.
[9]  Zhou, R; Josse, F; Gopel, W; Ozturk, Z; Bekaroglu, O. Phthalocyanines as sensitive materials for chemical sensors. Appl. Organomet. Chem 1996, 10, 557–577.
[10]  Huang, S; Artyukhin, A; Misra, N; Martinez, J; Stroeve, P; Grigoropoulos, C; Ju, J; Noy, A. Carbon nanotube transistor controlled by a biological ion pump gate. Nano Lett 2010, 10, 1812–1816.
[11]  So, HM; Won, K; Kim, Y; Kim, BK; Ryu, BH; Na, PS; Kim, H; Lee, JO. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc 2005, 127, 11906–11907.
[12]  Gruner, G. Carbon nanotube transistors for biosensing applications. Anal. Bioanal. Chem 2006, 384, 322–335.
[13]  Maehashi, K; Katsura, T; Kerman, K; Takamura, Y; Matsumoto, K; Tamiya, E. Label-free protein biosensor based on aptamer-modified carbon nanotube field effect transistors. Anal. Chem 2007, 79, 782–787.
[14]  Villamizar, R; Maroto, A; Rius, F; Inza, I; Figueras, M. Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosens. Bioelectron 2008, 24, 279–283.
[15]  Kuang, Z; Kim, S; Crookes-Goodson, W; Farmer, B; Naik, R. Biomimetic chemosensor: Designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano 2010, 4, 452–458.
[16]  Cui, Y; Wei, Q; Park, H; Lieber, C. Highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.
[17]  Hsiao, CY; Lin, CH; Hung, CH; Su, CJ; Lo, YR; Lee, CC; Lin, HC; Ko, FH; Huang, TY; Yang, YS. Novel poly-silicon nanowire field effect transistor for biosensing application. Biosens. Bioelectron 2009, 24, 1223–1229.
[18]  Patolsky, F; Lieber, C. Nanowire nanosensors. Mater. Today 2005, 8, 20–28.
[19]  Hahm, J; Lieber, C. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 2004, 4, 51–54.
[20]  Ellington, A; Szostak, J. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822.
[21]  Zayats, M; Huang, Y; Gill, R; Ma, C; Willner, I. Label-free and reagentless aptamer-based sensors for small molecules. J. Am. Chem. Soc 2006, 128, 13666–13667.
[22]  Maehashi, K; Katsura, T; Kerman, K; Takamura, Y; Matsumoto, K; Tamiya, E. Label-free protein biosensor based on aptamer-modified carbon nanotube field effect transistors. Anal. Chem 2007, 79, 782–787.
[23]  Patolsky, F; Weizmann, Y; Willner, I. Redox-active nucleic-acid replica for the amplified bioelectrocatalytic detection of viral DNA. J. Am. Chem. Soc 2002, 124, 770–772.
[24]  Xiao, Y; Lubin, A; Heeger, A; Plaxco, K. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed 2005, 44, 5456–5459.
[25]  Xio, Y; Piorek, B; Plaxco, K; Heeger, A. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J. Am. Chem. Soc 2005, 127, 17990–17991.
[26]  Cash, K; Heeger, A; Plaxco, K; Xiao, Y. Optimization of a reusable, DNA pseudoknot-based electrochemical sensor for sequence specifc DNA detection in blood serum. Anal. Chem 2009, 81, 656–661.
[27]  Artyukhin, AB; Stadermann, M; Friddle, RW; Stroeve, P; Bakajin, O; Noy, A. Controlled electrostatic gating of carbon nanotube FET devices. Nano Lett 2006, 6, 2080–2085.
[28]  Gui, EL; Li, LJ; Zhang, K; Xu, Y; Dong, X; Ho, X; Lee, PS; Kasim, J; Shen, ZX; Rogers, JA. Mhaisalkar DNA sensing by field-effect transistors based on networks of carbon nanotubes. J. Am. Chem. Soc 2007, 129, 14427–14432.
[29]  Maroto, A; Balasubramanian, K; Burghard, M; Kern, K. Functionalized metallic carbon nanotube devices for pH sensing. Chem. Phys. Chem 2007, 8, 220–223.
[30]  Chen, RJ; Choi, HC; Bangsaruntip, S; Yenilmez, E; Tang, X; Wang, Q; Chang, Y-L; Dai, H. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J. Am. Chem. Soc 2004, 126, 1563–1568.
[31]  Besteman, K; Lee, JO; Wiertz, FGM; Heering, HA; Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 2003, 3, 727–730.
[32]  Yeh, PH; Li, Z; Wang, ZL. Schottky-gated probe-free ZnO nanowire biosensor. Adv. Mater 2009, 21, 4975–4978.
[33]  Lauhon, CT; Szostak, JW. RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc 1995, 117, 1246–1257.
[34]  Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucl. Acids Res 2003, 31, 3406–3415.
[35]  Bayraktaroglu, B; Leedy, K; Neidhard, R. High-frequency ZnO thin-film transistors on Si substrates. IEEE Electron. Dev. Lett 2009, 30, 946–948.
[36]  Nomura, K; Ohta, H; Takagi, A; Kamiya, T; Hirano, M; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.
[37]  Hermanson, G. Bioconjugate Techniques; Elsevier: New York, NY, USA, 2008.
[38]  Piunno, P; Krull, U. Trends in the development of nucleic acid biosensors for medical diagnostics. Anal. Bioanal. Chem 2005, 381, 1004–1011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133