Zinc oxide field effect transistors (ZnO-FET), covalently functionalized with single stranded DNA aptamers, provide a highly selective platform for label-free small molecule sensing. The nanostructured surface morphology of ZnO provides high sensitivity and room temperature deposition allows for a wide array of substrate types. Herein we demonstrate the selective detection of riboflavin down to the pM level in aqueous solution using the negative electrical current response of the ZnO-FET by covalently attaching a riboflavin binding aptamer to the surface. The response of the biofunctionalized ZnO-FET was tuned by attaching a redox tag (ferrocene) to the 3’ terminus of the aptamer, resulting in positive current modulation upon exposure to riboflavin down to pM levels.
References
[1]
Someya, T; Small, J; Kim, P; Nuckolls, C; Yardley, J. Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett 2003, 3, 877–881.
[2]
Star, A; Han, TR; Gabrien, JC; Bradley, K; Gruner, G. Interaction of aromatic compounds with carbon nanotubes: Correlation to the Hammett parameter of the substituent and measured carbon nanotube FET response. Nano Lett 2003, 3, 1421–1423.
[3]
Tsukada, K; Kiwa, T; Yamaguchi, T; Migitaka, S; Goto, Y; Yokosawa, K. A study of fast response characteristics for hydrogen sensing with platinum FET sensor. Sens. Actuat. B 2006, 114, 158–163.
[4]
Kolmakov, A; Moskovits, M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res 2004, 34, 151–180.
[5]
Janata, J; Josowicz, M. Conducting polymers in electronic chemical sensors. Nature 2003, 2, 19–24.
[6]
Gerard, M; Chaubey, A; Malhotra, BD. Application of conducting polymers to biosensors. Biosens. Bioelectron 2001, 17, 345–359.
[7]
Fang, Q; Chetwynd, D; Covington, J; Toh, C; Gardner, J. Micro-gas-sensor with conducting polymers. Sens. Actuat. B 2002, 84, 66–71.
[8]
Covington, J; Gardner, J; Briand, D; de Rooij, N. A polymer gate FET sensor array for detecting organic vapours. Sens. Actuat. B 2001, 77, 155–162.
[9]
Zhou, R; Josse, F; Gopel, W; Ozturk, Z; Bekaroglu, O. Phthalocyanines as sensitive materials for chemical sensors. Appl. Organomet. Chem 1996, 10, 557–577.
[10]
Huang, S; Artyukhin, A; Misra, N; Martinez, J; Stroeve, P; Grigoropoulos, C; Ju, J; Noy, A. Carbon nanotube transistor controlled by a biological ion pump gate. Nano Lett 2010, 10, 1812–1816.
[11]
So, HM; Won, K; Kim, Y; Kim, BK; Ryu, BH; Na, PS; Kim, H; Lee, JO. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc 2005, 127, 11906–11907.
[12]
Gruner, G. Carbon nanotube transistors for biosensing applications. Anal. Bioanal. Chem 2006, 384, 322–335.
[13]
Maehashi, K; Katsura, T; Kerman, K; Takamura, Y; Matsumoto, K; Tamiya, E. Label-free protein biosensor based on aptamer-modified carbon nanotube field effect transistors. Anal. Chem 2007, 79, 782–787.
[14]
Villamizar, R; Maroto, A; Rius, F; Inza, I; Figueras, M. Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosens. Bioelectron 2008, 24, 279–283.
[15]
Kuang, Z; Kim, S; Crookes-Goodson, W; Farmer, B; Naik, R. Biomimetic chemosensor: Designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano 2010, 4, 452–458.
[16]
Cui, Y; Wei, Q; Park, H; Lieber, C. Highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.
Hahm, J; Lieber, C. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 2004, 4, 51–54.
[20]
Ellington, A; Szostak, J. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822.
[21]
Zayats, M; Huang, Y; Gill, R; Ma, C; Willner, I. Label-free and reagentless aptamer-based sensors for small molecules. J. Am. Chem. Soc 2006, 128, 13666–13667.
[22]
Maehashi, K; Katsura, T; Kerman, K; Takamura, Y; Matsumoto, K; Tamiya, E. Label-free protein biosensor based on aptamer-modified carbon nanotube field effect transistors. Anal. Chem 2007, 79, 782–787.
[23]
Patolsky, F; Weizmann, Y; Willner, I. Redox-active nucleic-acid replica for the amplified bioelectrocatalytic detection of viral DNA. J. Am. Chem. Soc 2002, 124, 770–772.
[24]
Xiao, Y; Lubin, A; Heeger, A; Plaxco, K. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed 2005, 44, 5456–5459.
[25]
Xio, Y; Piorek, B; Plaxco, K; Heeger, A. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J. Am. Chem. Soc 2005, 127, 17990–17991.
[26]
Cash, K; Heeger, A; Plaxco, K; Xiao, Y. Optimization of a reusable, DNA pseudoknot-based electrochemical sensor for sequence specifc DNA detection in blood serum. Anal. Chem 2009, 81, 656–661.
[27]
Artyukhin, AB; Stadermann, M; Friddle, RW; Stroeve, P; Bakajin, O; Noy, A. Controlled electrostatic gating of carbon nanotube FET devices. Nano Lett 2006, 6, 2080–2085.
[28]
Gui, EL; Li, LJ; Zhang, K; Xu, Y; Dong, X; Ho, X; Lee, PS; Kasim, J; Shen, ZX; Rogers, JA. Mhaisalkar DNA sensing by field-effect transistors based on networks of carbon nanotubes. J. Am. Chem. Soc 2007, 129, 14427–14432.
[29]
Maroto, A; Balasubramanian, K; Burghard, M; Kern, K. Functionalized metallic carbon nanotube devices for pH sensing. Chem. Phys. Chem 2007, 8, 220–223.
[30]
Chen, RJ; Choi, HC; Bangsaruntip, S; Yenilmez, E; Tang, X; Wang, Q; Chang, Y-L; Dai, H. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J. Am. Chem. Soc 2004, 126, 1563–1568.
[31]
Besteman, K; Lee, JO; Wiertz, FGM; Heering, HA; Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 2003, 3, 727–730.