全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Label-Free Electrochemical Detection of the Specific Oligonucleotide Sequence of Dengue Virus Type 1 on Pencil Graphite Electrodes

DOI: 10.3390/s110605616

Keywords: dengue virus, nucleic acid biosensor, guanine oxidation

Full-Text   Cite this paper   Add to My Lib

Abstract:

A biosensor that relies on the adsorption immobilization of the 18-mer single-stranded nucleic acid related to dengue virus gene 1 on activated pencil graphite was developed. Hybridization between the probe and its complementary oligonucleotides (the target) was investigated by monitoring guanine oxidation by differential pulse voltammetry (DPV). The pencil graphite electrode was made of ordinary pencil lead (type 4B). The polished surface of the working electrode was activated by applying a potential of 1.8 V for 5 min. Afterward, the dengue oligonucleotides probe was immobilized on the activated electrode by applying 0.5 V to the electrode in 0.5 M acetate buffer (pH 5.0) for 5 min. The hybridization process was carried out by incubating at the annealing temperature of the oligonucleotides. A time of five minutes and concentration of 1 μM were found to be the optimal conditions for probe immobilization. The electrochemical detection of annealing between the DNA probe (TS-1P) immobilized on the modified electrode, and the target (TS-1T) was achieved. The target could be quantified in a range from 1 to 40 nM with good linearity and a detection limit of 0.92 nM. The specificity of the electrochemical biosensor was tested using non-complementary sequences of dengue virus 2 and 3.

References

[1]  Barrett, ADT; Stanberry, LR. Dengue. In Vaccines for Biodefense and Emerging and Neglected Diseases, 1st ed; Vaughn, DW, Whitehead, SS, Durbin, AP, Eds.; Elsevier: New York, NY, USA, 2009; pp. 288–313.
[2]  Araujo, JM; Nogueira, RM; Schatzmayr, HG; Zanotto, PM; Bello, G. Phylogeography and evolutionary history of dengue virus type 3. Infect. Genet. Evol 2009, 9, 716–725.
[3]  Santos, H; Tai, MHH; Rocha, LFN; Silva, HHG; Luz, C. Dependence of Metarhizium anisopliae on high humidity for ovicidal activity on Aedes aegypti Adelair. Biol. Contr 2009, 50, 37–42.
[4]  Ribeiro, KA; de Carvalho, CM; Molina, MT; Lima, EP; Lopez-Montero, E; Reys, JR; de Oliveira, MB; Pinto, AV; Santana, AE; Goulart, MO. Activities of naphthoquinones against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae), vector of dengue and Biomphalaria glabrata (Say, 1818), intermediate host of Schistosoma mansoni. Acta Tropica 2009, 111, 44–50.
[5]  Siqueira, JB, Jr; Martelli, CM; Coelho, GE; Simplicio, AC; Hatch, DL. Dengue and dengue hemorrhagic fever, Brazil, 1981–2002. Emerg. Infect. Dis 2005, 11, 48–53.
[6]  Teixeira, MG; Costa, MC; Barreto, NF; Barreto, ML. Dengue: Twenty-five years since reemergence in Brazil. Caderno de Saúde Publica 2009, 25, 7–18.
[7]  Braga, C; Luna, CF; Martelli, CM; de Souza, WV; Cordeiro, MT; Alexander, N; de Albuquerque, MF; Junior, JC; Marques, ET. Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife, Brazil. Acta Tropica 2010, 113, 234–240.
[8]  Zaytseva, NV; Montagna, RA; Baeumner, AJ. Microfluidic biosensor for the serotype-specific detection of dengue virus RNA. Anal. Chem 2005, 77, 7520–7527.
[9]  Guzman, MG; Kouri, G. Dengue: An update. Lancet Infect. Dis 2002, 2, 33–42.
[10]  Guzman, MG; Kouri, G. Dengue diagnosis, advances and challenges. Int. J. Infect. Dis 2004, 8, 69–80.
[11]  Lee, NY; Jung; Yun, K; Park, HG. On-chip colorimetric biosensor based on polydiacetylene (PDA) embedded in photopolymerized poly(ethylene glycol) diacrylate (PEG-DA) hydrogel. Biochem. Eng. J 2006, 29, 103–108.
[12]  Hejazi, MS; Pournaghi-Azar, MH; Alipour, E; Karimi, F. Construction, electrochemically biosensing and discrimination of recombinant plasmid (pEThIL-2) on the basis of interleukine-2 DNA insert. Biosens.Bioelectron 2008, 23, 1588–1594.
[13]  Karamollao?lu, HA; Oktem, MM. QCM-based DNA biosensor for detection of genetically modified organisms (GMOs). Biochem. Eng. J 2009, 44, 142–150.
[14]  Souza, EVM; Nascimento, GA; Santana, NA; Bruneska, D; Lima Filho, JL. Development of electrochemical biosensor for virus dengue diagnostic using graphite electrode. New Biotechnol 2009, 25, 378.
[15]  Meric, B; Kerman, K; Ozkan, D; Kara, P; Erensoy, S; Akarca, US; Mascini, M; Ozsoz, M. Electrochemical DNA biosensor for the detection of TT and Hepatitis B virus from PCR amplified real samples by using methylene blue. Talanta 2002, 56, 837–846.
[16]  Teles, FRR; Prazeres, DMF; Lima-Filho, JL. Electrochemical detection of a dengue-related oligonucleotide sequence using ferrocenium as a hybridization indicator. Sensors 2007, 7, 2510–2518.
[17]  Drummond, TG; Hill, MG; Barton, JK. Electrochemical DNA sensors. Nat. Biotechnol 2003, 21, 1192–1199.
[18]  Marrazza, G; Chianella, I; Mascini, M. Disposable DNA electrochemical biosensors for environmental monitoring. Anal. Chim. Acta 1997, 387, 297–307.
[19]  Ozkan, D; Erdem, A; Kara, P; Kerman, K; Meric, B; Hassmann, J; Ozsoz, M. Allele-specific genotype detection of factor V Leiden mutation from polymerase chain reaction amplicons based on label-free electrochemical genosensor. Anal. Chem 2002, 74, 5931–5936.
[20]  Deubel, V; Laille, M; Hugnot, JP; Chungue, E; Guesdon, JL; Drouet, MT; Bassot, S; Chevrier, D. Identification of dengue sequences by genomic amplification: Rapid diagnosis of dengue virus serotypes in peripheral blood. J. Virol. Meth 1990, 30, 41–54.
[21]  Wang, Y; Xu, H; Zhang, J; Li, G. Electrochemical Sensors for Clinic Analysis. Sensors 2008, 8, 2043–2081.
[22]  Wang, J; Rivas, G; Fernandes, JR; Paz, JLL; Jiang, M; Waymire, R. Indicator-free electrochemical DNA hybridization biosensor. Anal. Chim. Acta 1998, 375, 197–203.
[23]  Sabzi, RE; Sehatnia, B; Pournaghi-Azar, MH; Hejazi, MS. Electrochemical detection of human papilloma vírus (HPV) target DNA using MB on pencial graphite electrode. J. Iran. Chem. Soc 2008, 5, 476–483.
[24]  Dogan-Topal, B; Uslu, B; Ozkan, SA. Voltammetric studies on the HIV-1 inhibitory drug Efavirenz: the interaction between dsDNA and drug using electrochemical DNA biosensor and adsorptive stripping voltammetric determination on disposable pencil graphite electrode. Biosens. Bioelectron 2009, 24, 2358–2364.
[25]  Sukhorukov, GB; Montrel, MM; Petrov, AI; Shabarchina, LI; Sukhorukov, BI; Multilayer films containing immobilized nucleic acids. Their structure and possibilities in biosensor applications. Biosens. Bioelectron 1996, 11, 913–922.
[26]  Brett, AMO; Serrano, SHP. The electrochemical oxidation of DNA. J. Braz. Chem. Soc 1995, 6, 97–100.
[27]  Palecek, E; Fojta, M; Tomschik, M; Wang, J. Electrochemical biosensors for DNA hybridization and DNA damage. Biosens. Bioelectron 1998, 13, 621–628.
[28]  Yardim, Y; Keskin, E; Levent, A; Ozsoz, M; Senturk, Z. Voltammetric studies on the potent carcinogen, 7,12-dimethylbenz[a]anthracene: Adsorptive stripping voltammetric determination in bulk aqueous forms and human urine samples and detection of DNA interaction on pencil graphite electrode. Talanta 2010, 80, 1347–1355.
[29]  Pournaghi-Azar, MH; Hejazi, MS; Alipour, E. Developing an electrochemical deoxyribonucleic acid (DNA) biosensor on the basis of human interleukine-2 gene using an electroactive label. Anal. Chim. Acta 2006, 570, 144–150.
[30]  Wang, J; Cai, X; Rivas, G; Shiraishi, H; Dontha, N. Nucleic-acid immobilization, recognition and detection at chronopotentiometric DNA chips. Biosens. Bioelectron 1997, 12, 587–599.
[31]  Pournaghi-Azar, MH; Hejazi, MS; Alipour, E. Detection of hunan interleukine-2 gene using a label-free electrochemical DNA hybridization biosensor on the basis of non-inosine substitued probe. Electroanalysis 2007, 19, 466–472.
[32]  Tosar, JP; Kell, K; Laíz, J. Two independent label-free detection methods in one electrochemical DNA sensor. Biosens. Bioelectron 2009, 24, 3036–3042.
[33]  Baeummer, AJ; Cohen, RN; Miksic, V; Min, J. RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens. Bioelectron 2003, 18, 405–413.
[34]  Gumustas, M; Ozkzn, SA. The role of and the place of method validation in drug analysis using electroanalytical techniques. Open Anal. Chem. J 2011, 5, 1–21.
[35]  Zhu, D; Tang, Y; Xing, D; Chen, WR. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method. Analytical Chemistry 2008, 80, 3566–3571.
[36]  Zhang, S; Tan, Q; Li, F; Zhang, X. Hybridization biosensor using diaquabis[N-(2-pyridinylmethyl)benzamide-κ2N,O]-cadmium(II) dinitrate as a new electroactive indicator for detection of human hepatitis B virus DNA. Sens. Actuat. B 2007, 124, 290–296.
[37]  Nasirizadeh, N; Zare, HR; Pournaghi-Azar, MH; Hejazi, MS. Introduction of hematoxylin as an electroactive label for DNA biosensors and its employment in detection of target DNA sequence and single-base mismatch in human papilloma virus corresponding to oligonucleotide. Biosens. Bioelectron 2011, 26, 2638–2644.
[38]  Pournaghi-Azar, MH; Ahour, F; Hejazi, MS. Differential pulse voltammetric detection of Hepatitis C virus 1a oligonucleotide chain by a label-free electrochemical dna hybridization biosensor using consensus sequence of Hepatitis C virus 1a probe on the pencil graphite electrode. Electroanalysis 2009, 21, 1822–1828.
[39]  Raoof, JB; Ojani, R; Golabi, SM; Hamidi-Asl, E; Hejazi, MS. Preparation of an electrochemical PNA biosensor for detection of target DNA sequence and single nucleotide mutation on p53 tumor suppressor gene corresponding oligonucleotide. Sens Actuat B 2011. in press.
[40]  Hejazi, MS; Raoof, J; Ojani, R; Golabi, SM; Asl, EH. Brilliant cresyl blue as electroactive indicator in electrochemical DNA oligonucleotide sensors. Bioelectrochemistry 2010, 78, 141–146.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133