全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

An Asynchronous Multi-Sensor Micro Control Unit for Wireless Body Sensor Networks (WBSNs)

DOI: 10.3390/s110707022

Keywords: asynchronous, micro control unit, multi-sensor, wireless body sensor network

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, an asynchronous multi-sensor micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of asynchronous interfaces, a power management unit, a multi-sensor controller, a data encoder (DE), and an error correct coder (ECC). To improve the system performance and expansion abilities, the asynchronous interface is created for handshaking different clock domains between ADC and RF with MCU. To increase the use time of the WBSN system, a power management technique is developed for reducing power consumption. In addition, the multi-sensor controller is designed for detecting various biomedical signals. To prevent loss error from wireless transmission, use of an error correct coding technique is important in biomedical applications. The data encoder is added for lossless compression of various biomedical signals with a compression ratio of almost three. This design is successfully tested on a FPGA board. The VLSI architecture of this work contains 2.68-K gate counts and consumes power 496-μW at 133-MHz processing rate by using TSMC 0.13-μm CMOS process. Compared with the previous techniques, this work offers higher performance, more functions, and lower hardware cost than other micro controller designs.

References

[1]  Spyrou, S; Bamidis, PD; Maglaveras, N; Pangalos, G; Pappas, C. A methodology for reliability analysis in health networks. IEEE Trans. Inf. Technol. Biomed 2008, 12, 377–386, doi:10.1109/TITB.2007.905125. 18693505
[2]  National coalition on health care. Available online: http://nchc.org/issue-areas/health-it (accessed on 30 June 2011).
[3]  Yang, YW; Divsholi, BS. Sub-frequency interval approach in electromechanical impedance technique for concrete structure health monitoring. Sensors 2010, 10, 11644–11661, doi:10.3390/s101211644. 22163548
[4]  Chang, CL; Chang, CW; Huang, HY; Hsu, CM; Huang, CH; Chiou, JC; Luo, CH. A power-efficient bio-potential acquisition device with ds-mde sensors for long-term healthcare monitoring applications. Sensors 2010, 10, 4777–4793, doi:10.3390/s100504777. 22399907
[5]  Brandl, M; Grabner, J; Kellner, K; Seifert, F; Nicolics, J; Grabner, S; Grabner, G. A low-cost wireless sensor system and its application in dental retainers. IEEE Sens. J 2009, 9, 255–262, doi:10.1109/JSEN.2008.2012205.
[6]  Huang, PH; Chen, JL; Larosa, YT; Chiang, TL. Estimation of distributed fermat-point location for wireless sensor networking. Sensors 2011, 11, 4358–4371, doi:10.3390/s110404358. 22163851
[7]  Cuesta-Frau, D; Varela, M; Aboy, M; Miró-Martínez, P. Description of a portablewireless device for high-frequency body temperature acquisition and analysis. Sensors 2009, 9, 7648–7663, doi:10.3390/s91007648. 22408473
[8]  Lee, SS; Nam, DH; Hong, YS; Lee, WB; Son, IH; Kim, KH; Choi, JG. Measurement of blood pressure using an arterial pulsimeter equipped with a hall device. Sensors 2011, 11, 1784–1793, doi:10.3390/s110201784. 22319381
[9]  Carlos, O; González-Morán, JJ. Agustín flores-cuautle and ernesto suaste-gómez. A piezoelectric plethysmograph sensor based on a Pt wire implanted lead lanthanum zirconate titanate bulk ceramic. Sensors 2010, 10, 7146–7156, doi:10.3390/s100807146. 22163596
[10]  Hassan, AK; Saad, B; Ghani, SA; Adnan, R; Rahim, AA; Ahmad, N; Mokhtar, M; Ameen, ST; Al-araji, SM. Ionophore-based potentiometric sensors for the flow-injection determination of promethazine hydrochloride in pharmaceutical formulations and human urine. Sensors 2011, 11, 1028–1042, doi:10.3390/s110101028. 22346617
[11]  Fournier, Y; Maeder, T; Boutinard-Rouelle, G; Barras, A; Craquelin, N; Ryser, P. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics. Sensors 2010, 10, 11156–11173, doi:10.3390/s101211156. 22163518
[12]  Luo, Y; Zhu, Y; Luo, D; Zhou, J; Song, E; Wang, D. Globally optimal multisensor distributed random parameter matrices kalman filtering fusion with applications. Sensors 2008, 8, 8086–8103, doi:10.3390/s8128086.
[13]  Garcia-Sanchez, AJ; Garcia-Sanchez, F; Losilla, F; Kulakowski, P; Garcia-Haro, J; Rodríguez, A; López-Bao, JV; Palomares, F. Wireless sensor network deployment for monitoring wildlife passages. Sensors 2010, 10, 7236–7262, doi:10.3390/s100807236. 22163601
[14]  Choudhary, P; Marculescu, D. Power management of voltage/frequency island-based systems using hardware-based methods. IEEE Trans. Very Large Scale Integr. (VLSI) Syst 2009, 17, 427–438, doi:10.1109/TVLSI.2008.2005309.
[15]  Silicon Laboratories Inc. On MCUs Topic, Available online: http://www.silabs.com (accessed on 5 July 2011).
[16]  Texas Instruments (TI). On Digtal Siganl Processors & ARM Microprocessors Topic, Available online: http://focus.ti.com (accessed on 5 July 2011).
[17]  Amirtharajah, GR; Chandrakasan, AP. A micropower programmable DSP using approximate signal processing based on distributed arithmetic. IEEE J. Solid-State Circuits 2004, 39, 337–347, doi:10.1109/JSSC.2003.821774.
[18]  Wang, D; Zhang, L; Liu, J; Liu, R. Embedded speech recognition system on 8-bit MCU core. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing 2004 (ICASSSP 04), Montreal, Canada, 17–21 May 2004. Volume 5; pp. 17–21.
[19]  Lee, HY; Chen, SL; Luo, CH. A CMOS smart thermal sensor for biomedical application. IEICE Trans Electron 2008. E91-C, 96–104.
[20]  Chen, SL; Lee, HY; Chen, CA; Huang, HY; Luo, CH. Wireless body sensor network with adaptive low power design for biometrics and healthcare applications. IEEE Syst. J 2009, 3, 398–409, doi:10.1109/JSYST.2009.2032440.
[21]  Arm, C; Gyger, S; Masgonty, JM; Morgan, M; Nagel, JL; Piguet, C; Rampogna, F; Volet, P. Low-power 32-bit dual-MAC 120 uW/MHz 1.0 vicyflex1 DSP/MCU core. IEEE J. Solid-State Circuits 2009, 44, 2055–2064, doi:10.1109/JSSC.2009.2021924.
[22]  Choi, H; Liu, W; Sung, W. VLSI implementation of BCH error correction for multilevel cell NAND flash memory. IEEE Trans. Very Large Scale Integr. (VLSI) Syst 2010, 18, 843–847, doi:10.1109/TVLSI.2009.2015666.
[23]  Krishnan, SC; Panigrahy, R; Parthasarathy, S. Error-correcting codes for ternary content addressable memories. IEEE Trans. Comput 2009, 58, 275–279, doi:10.1109/TC.2008.179.
[24]  Chen, SL; Lee, HY; Chen, CA; Luo, CH. A wireless body sensor network system for healthcare monitoring application. Proceedings of IEEE Biomedical Circuits and System Conference 2007, Montreal, Canada, 27–30 November 2007.
[25]  Monton, E; Hernandez, JF; Blasco, JM; Herve, T; Micallef, J; Grech, I; Brincat, A. Body area network for wireless patient monitoring. IET Commun 2008, 2, 215–222, doi:10.1049/iet-com:20070046.
[26]  Huffman, DA. A method for the construction of minimum redundancy codes. Proc. Inst. Radio Eng 1951, 40, 1098–1101.
[27]  Texas Instruments (TI). Under Analog to Digital Converter on Data Converts Topic, Available online: http://www.ti.com/ (accessed on 5 July 2011).
[28]  Moody, GB; Mark, RG. The impact of the MIT/BIH arrhythmia database. IEEE Eng. Med. Biol. Mag 2001, 20, 45–50, doi:10.1109/51.932724. 11446209

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133