全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Terahertz Active Photonic Crystals for Condensed Gas Sensing

DOI: 10.3390/s110606003

Keywords: terahertz, optical microsensor, quantum-cascade laser, active resonator

Full-Text   Cite this paper   Add to My Lib

Abstract:

The terahertz (THz) spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs), i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10?3 times the center lasing frequency. The minimum detectable refractive index change is 1.6?× 10?5 RIU.

References

[1]  Moon, HJ; Park, GW; Lee, SB; An, K; Lee, JH. Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity. Opt. Commun 2004, 235, 401–407, doi:10.1016/j.optcom.2004.02.056.
[2]  Chao, CY; Fung, W; Guo, LJ. Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quantum Electron 2006, 12, 134–142, doi:10.1109/JSTQE.2005.862945.
[3]  Armani, DK; Kippenberg, TJ; Spillane, SM; Vahala, KJ. Ultra-high-Q toroid microcavity on a chip. Nature 2003, 421, 925–928, doi:10.1038/nature01371. 12606995
[4]  Kuwata-Gonokami, M; Takeda, K; Yasuda, H; Ema, K. Laser emission from dye-doped polystyrene microsphere. Jpn. J. Appl. Phys 1992, 31, L99–L101, doi:10.1143/JJAP.31.L99.
[5]  Lu, TW; Lin, PT; Sio, KU; Lee, P. Optical sensing of square lattice photonic crystal point-shifted nanocavity for protein adsorption detection. Appl Phys Lett 2010, 96, 213702:1–213702:3.
[6]  Senlik, O; Tang, L; Tor-Ngern, P; Yoshie, T. Optical micorcavities clad by low-absorption electrode media. IEEE Photonic. J 2010, 2, 794–801, doi:10.1109/JPHOT.2010.2071413.
[7]  Yoshie, T; Tang, L; Su, SY. Optical microcavity: Sensing down to single molecules and atoms. Sensors 2011, 11, 1972–1991, doi:10.3390/s110201972. 22319393
[8]  Yariv, A; Yeh, P. Photonics; Oxford University Press: Oxford, UK, 2007.
[9]  Artemyev, MV; Woggon, U; Wannemacher, R. Photons confined in hollow microspheres. Appl. Phys. Lett 2001, 78, 1032–1034, doi:10.1063/1.1350423.
[10]  Kumar, S; Hu, Q; Reno, JL. 186 K operation of terahertz quantum-cascade lasers based on a diagonal design. Appl Phys Lett 2009, 94, 131105:1–131105:3.
[11]  Gorodetsky, ML; Savchenkov, AA; Ilchenko, VS. Ultimate Q of optical microsphere resonators. Opt. Lett 1996, 21, 453–455, doi:10.1364/OL.21.000453. 19865436
[12]  Zhang, ZW; Mu, KJ; Zhang, LL; Zhang, CL. Reflective mode terahertz time domain spectroscopy for sealed liquid detection. Proc SPIE 2010, doi:10.1117/12.870441..
[13]  Zhou, QL; Zhang, CL; Mu, KJ; Jin, B; Zhang, LL; Li, WW; Feng, RS. Optical property and spectroscopy studies on the explosive 2,4,6-trinitro-1,3,5-trihydroxybenzene in the terahertz range. Appl Phys Lett 2008, 92, 101106:1–101106:3.
[14]  Melinger, JS; Laman, N; Grischkowsky, D. The underlying terahertz vibrational spectrum of explosives solids. Appl Phys Lett 2008, 93, 011102:1–011102:3.
[15]  Fitzgerald, AJ; Wallace, VP; Jimenez-Linan, M; Bobrow, L; Pye, RJ; Purushotham, AD; Arnone, DD. Terahertz pulsed imaging of human breast tumors. Radiaology 2006, 239, 533–540.
[16]  Rothman, LS; Gordon, IE; Barbe, A; Chris Benner, D; Bernath, PF; Birk, M; Boudon, V; Brown, LR; Campargue, A; Champion, J-P; et al. The HITRAN 2008 molecular spectroscopic database. JQSRT 2009, 110, 533–572, doi:10.1016/j.jqsrt.2009.02.013.
[17]  Walther, C; Scalari, G; Amanti, MI; Beck, M; Faist, J. Microcavity laser oscillating in a circuit-based resonator. Science 2010, 327, 1495–1497, doi:10.1126/science.1183167. 20299591
[18]  Kunt, HK; Soteropulos, C; Armani, AM. Bioconjugation strategies for microtoroidal optical resonators. Sensors 2010, 10, 9317–9336, doi:10.3390/s101009317. 22163409
[19]  Hodges, DT; Foote, FB; Reel, RD. Efficient high-power operation of the cw far-infrared waveguide laser. Appl. Phys. Lett 1976, 29, 662–664, doi:10.1063/1.88892.
[20]  Pflügl, C; Belkin, MA; Wang, QJ; Geiser, M; Belyanin, A; Fischer, M; Wittmann, A; Faist, J; Capasso, F. Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation. Appl Phys Lett 2008, 93, 161110:1–161110:3.
[21]  K?hler, R; Tredicucci, A; Beere, HE; Lienfield, EH; Davis, AG; Ritchie, DA; Iotti, RC; Rossi, F. Terahertz semiconductor heterostructure laser. Nature 2002, 417, 156–159, doi:10.1038/417156a. 12000955
[22]  Hall, R; Fenner, GE; Kingsley, JD; Soltys, TJ; Carlson, RO. Coherent light emission from GaAs junctions. Phys. Rev. Lett 1962, 9, 366–368, doi:10.1103/PhysRevLett.9.366.
[23]  Walther, C; Fischer, M; Scalari, G; Terazzi, R; Hoyler, N; Faist, J. Quantum cascade lasers operating from 1.2 to 1.6 THz. Appl Phys Lett 2007, 91, 131122:1–131122:3.
[24]  Lee, AWM; Qin, Q; Kumar, S; Williams, BS; Hu, Q. Real-time terahertz imaging over a standoff distance (>25 meters). Appl Phys Lett 2006, 89, 141125:1–141125:3.
[25]  Williams, BS; Callebaut, H; Kumar, S; Hu, Q; Reno, JL. 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation. Appl. Phys. Lett 2002, 82, 1015–1017.
[26]  Benz, A; Fasching, G; Andrews, AM; Martl, M; Unterrainer, K; Roch, T; Schrenk, W; Golka, S; Strasser, G. The influence of doping on the performance of terahertz quantum-cascade lasers. Appl Phys Lett 2007, 90, 101107:1–101107:3.
[27]  Baryshev, A; Hovenier, JN; Adam, AJL; Kasalynas, I; Gao, JR; Klaassen, TO; Williams, BS; Kumar, S; Hu, Q; Reno, JL. Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser. Appl Phys Lett 2006, 89, 031115:1–031115:3.
[28]  Ren, Y; Hovenier, JN; Higgins, R; Gao, JR; Klapwijk, TM; Shi, SC; Bell, A; Klein, B; Williams, BS; Kumar, S; Hu, Q; Reno, JL. Terahertz heterodyne spectrometer using a quantum cascade laser. Appl Phys Lett 2010, 97, 161105:1–161105:3.
[29]  Khosropanah, P; Baryshev, A; Zhang, W; Jellema, W; Hovenier, JN; Gao, JR; Klapwijk, TM; Paveliev, DG; Williams, BS; Kumar, S; Hu, Q; Reno, JL; Klein, B; Hesler, JL. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference. Opt. Lett 2009, 34, 2958–2960, doi:10.1364/OL.34.002958. 19794781
[30]  Hübers, HW; Pavlov, SG; Semenov, AD; K?hler, R; Mahler, L; Tredicucci, A; Beere, HE; Ritchie, DA; Linfield, EH. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver. Opt. Express 2005, 13, 5890–5896, doi:10.1364/OPEX.13.005890. 19498595
[31]  Khosropanah, P; Zhang, W; Hovenier, JN; Gao, JR; Klapwijk, TM; Amanti, MI; Scalari, G; Faist, J. 3.4 THz heterodyne receiver using a hot electron bolometer and a distributed feedback quantum cascade laser. J Appl Phys 2008, 104, 113106:1–113106:6.
[32]  Song, BS; Noda, S; Asano, T; Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater 2005, 4, 207–210, doi:10.1038/nmat1320.
[33]  Nojima, S. Single-mode laser oscillation in semiconductor gain photonic crystals. Jpn. J. Appl. Phys 1999, 38, 867–869, doi:10.1143/JJAP.38.L867.
[34]  Nojima, S. Optical-gain enhancement in two-dimensional active photonic crystals. J. Appl. Phys 2001, 90, 545–551, doi:10.1063/1.1379354.
[35]  Kohen, S; Williams, BS; Hu, Q. Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators. J Appl Phys 2005, 97, 053106:1–053106:9.
[36]  Johnson, SG; Fan, S; Villeneuve, PR; Joannopoulos, JD; Kolodziejski, LA. Guided modes in photonic crystal slabs. Phys. Rev. B 1999, 60, 5751–5758, doi:10.1103/PhysRevB.60.5751.
[37]  Zhang, H; Dunbar, LA; Scalari, G; Houdre, R; Faist, J. Terahertz photonic crystal quantum cascade lasers. Opt. Express 2007, 15, 16818–16827, doi:10.1364/OE.15.016818. 19550972
[38]  Benz, A; Deutsch, C; Fasching, G; Andrews, AM; Unterrainer, K; Klang, P; Schrenk, W; Strasser, G. Active photonic crystal terahertz laser. Opt. Express 2009, 17, 941–946, doi:10.1364/OE.17.000941. 19158909
[39]  Yasuda, H; Hosako, I. Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy. Jpn. J. Appl. Phys 2008, 47, 1632–1634, doi:10.1143/JJAP.47.1632.
[40]  Oskooi, AF; Roundy, D; Ibanescu, M; Bermel, P; Joannopoulos, JD; Johnson, SG. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun 2010, 181, 687–702, doi:10.1016/j.cpc.2009.11.008.
[41]  Johnson, SG; Joannopoulos, JD. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 2001, 3, 173–190.
[42]  Tian, Y; Wang, W; Wu, N; Zou, X; Guthy, C; Wang, X. A Miniature fiber optic refractive index sensor built in a MEMS-based microchannel. Sensors 2011, 11, 1078–1087. 22344393
[43]  Sünner, T; Stichel, T; Kwon, SH; Schlereth, TW; H?fling, S; Kamp, M; Forchel, A. Photonic crystal cavity based gas sensor. Appl Phys Lett 2008, 92, 261112:1–261112:3.
[44]  Francois, A; Himmelhaus, M. Whispering gallery mode biosensor operated in the stimulated emission regime. Appl Phys Lett 2009, 94, 031101:1–031101:3.
[45]  Vollmer, F; Arnold, S; Keng, D. Single virus detection from the reactive shift of a whispering-gallery mode. PNAS 2008, 105, 20701–20704, doi:10.1073/pnas.0808988106. 19075225
[46]  Schlichting, H; Menzel, D; Brunner, T; Brenig, W. Sticking of rare gas atoms on the clean RU(001) surface. J. Chem. Phys 1992, 97, 4453–4467, doi:10.1063/1.463888.
[47]  Mosor, S; Hendrickson, J; Richards, BC; Sweet, J; Khitrova, G; Gibbs, HM; Yoshie, T; Scherer, A; Shchekin, OB; Deppe, DG. Scanning a photonic crystal slab by condensation of xenon. Appl. Phys. Lett 2005, 87, 141105, doi:10.1063/1.2076435.
[48]  Pang, S; Beckham, RE; Meissner, KE. Quantum dot-embedded microspheres for remote refractive index sensing. Appl Phys Lett 2008, 92, 221108:1–221108:3.
[49]  Arnold, S; Khoshima, M; Teraoka, I; Holler, S; Vollmer, F. Shift of whispering-gallery modes in microspheres by protein adsorption. Opt. Lett 2003, 28, 272–274, doi:10.1364/OL.28.000272. 12653369
[50]  Weller, A; Liu, FC; Dahint, R; Himmelhaus, M. Whispering gallery mode biosensors in the low-Q limit. Appl. Phys. B 2008, 90, 561–567, doi:10.1007/s00340-007-2893-2.
[51]  Fasching, G; Tamosiunas, V; Benz, A; Andrews, AM; Unterrainer, K; Zobl, R; Roch, T; Schrenk, W; Strasser, G. Subwavelength microdisk and microring terahertz quantum-cascade lasers. IEEE J. Quantum Electron 2007, 43, 687–697, doi:10.1109/JQE.2007.900254.
[52]  Kubis, T; Yeh, C; Vogl, P; Benz, A; Fasching, G; Deutsch, C. Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers. Phys. Rev. B 2009, 79, 195323, doi:10.1103/PhysRevB.79.195323.
[53]  Nelander, R; Wacker, A. Temperature dependence of the gain profile for terahertz quantum cascade lasers. Appl Phys Lett 2008, 92, 081102:1–081102:3.
[54]  Jirauschek, C; Scarpa, G; Lugli, P; Vitiello, MS; Scamarcio, G. Comparative analysis of resonant phonon THz quantum cascade lasers. J Appl Phys 2007, 101, 086109:1–086109:3.
[55]  Matyas, A; Belkin, MA; Lugli, P; Jirauschek, C. Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs. Appl Phys Lett 2010, 96, 201110:1–201110:3.
[56]  Kubis, T; Mehrotra, SR; Klimeck, G. Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements. Appl Phys Lett 2010, 97, 261106:1–261106:3.
[57]  Wacker, A. Extraction-controlled quantum cascade lasers. Appl Phys Lett 2010, 97, 081105:1–081105:3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133