全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Development of a Mass Sensitive Quartz Crystal Microbalance (QCM)-Based DNA Biosensor Using a 50 MHz Electronic Oscillator Circuit

DOI: 10.3390/s110807656

Keywords: DNA sequence detection, quartz crystal microbalance, electronic oscillator, sensitivity, frequency noise, resolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm2 in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected.

References

[1]  Taylor, RF; Schultz, JS. Handbook of Chemical and Biological Sensors, 1st ed ed.; Institute of Physics Publishing: Bristol, UK, 1996.
[2]  Hou, X; Jiang, L. Learning from nature: Building bio-inspired smart nanochannels. ACS Nano 2009, 3, 3339–3342, doi:10.1021/nn901402b. 19928930
[3]  Hou, X; Guo, W; Xia, F; Nie, FQ; Dong, H; Tian, Y; Wen, LP; Wang, L; Cao, LX; Yang, Y; et al. A biomimetic potassium responsive nanochannel: G-Quadruplex DNA conformational switching in a synthetic nanopore. J. Am. Chem. Soc 2009, 131, 7800–7805, doi:10.1021/ja901574c. 19435350
[4]  Mannelli, I; Minunni, M; Tombelli, S; Mascini, M. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organism (GMOs) detection. Biosens. Bioelectron 2003, 18, 129–140, doi:10.1016/S0956-5663(02)00166-5. 12485759
[5]  Lazerges, M; Perrot, H; Zeghib, N; Antoine, E; Compere, C. In situ QCM DNA-biosensor probe modification. Sens. Actuat. B 2006, 120, 329–337, doi:10.1016/j.snb.2006.02.024.
[6]  Rodriguez-Pardo, L; Fari?a, J; Gabrielli, C; Perrot, H; Brendel, R. Resolution in quartz crystal oscillator circuits for high sensitivity microbalance sensors in damping media. Sens. Actuat. B 2004, 103, 318–324, doi:10.1016/j.snb.2004.04.060.
[7]  Granstaff, VE; Martin, SJ. Characterization of a thickness-shear mode quartz resonator with multiple nonpiezoelectric layers. J. Appl. Phys 1994, 75, 1319–1329, doi:10.1063/1.356410.
[8]  Barnes, C. Development of quartz crystal oscillators for under-liquid sensing. Sens. Actuat. A 1991, 29, 59–69, doi:10.1016/0924-4247(91)80032-K.
[9]  Sauerbrey, G. Verwendung von Schwingquarzen zur W?gung dünner Schichten und zur Mirkow?gung. Z. Phys 1959, 155, 206–222, doi:10.1007/BF01337937.
[10]  Rodríguez-Pardo, L; Fari?a, J; Gabrielli, C; Perrot, H; Brendel, R. Quartz crystal oscillator circuit for high resolution microgravimetric sensors in fluids. Electron. Lett 2006, 42, 1065–1067, doi:10.1049/el:20061854.
[11]  Rodríguez-Pardo, L; Fari?a, J; Gabrielli, C; Perrot, H; Brendel, R. Design considerations of Miller oscillators for high sensitivity QCM sensors in damping media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1965–1976, doi:10.1109/TUFFC.2007.490. 18019233
[12]  Rodríguez-Pardo, L; Fari?a, J; Gabrielli, C; Perrot, H; Brendel, R. TSM-AW sensors based on Miller XCOs for microgravimetric measurements in liquid media. IEEE Trans. Instrum. Meas 2008, 57, 2309–2319, doi:10.1109/TIM.2008.922104.
[13]  Matthys, RJ. Crystal Oscillators Circuits, 1st ed ed.; John Wiley & Sons: Hoboken, NJ, USA, 1983.
[14]  Ehahoun, H; Gabrielli, C; Keddam, M; Perrot, H; Cetre, Y; Diguet, L. EQCM corrosion sensor for solid metals and metal alloys. Application to the dissolution of 304 stainless steel. J. Electrochem. Soc 2001, 148, 333–336.
[15]  Rodríguez-Pardo, L; Cao-Paz, A; Fari?a, J; Covelo, A; Novoa, XR; Pérez, C. Water uptake kinetics in anti-corrosion organic films with a high resolution microbalance oscillator sensor. Sens. Actuat. B 2010, 144, 443–449, doi:10.1016/j.snb.2009.03.058.
[16]  Wide Bandwith Operational Transconductance Amplifier and Buffer, Texas Instruments; Burr-Brown Corporation: Tucson, AZ, 1995. Available online: http://focus.ti.com/lit/ds/symlink/opa660.pdf (accessed on 2 August 2011).
[17]  Bizet, K; Gabrielli, C; Perrot, H; Therasse, J. Validation of antibody-based recognition by piezzoelectric transducers through electroacoustic admittance analysis. Biosens. Bioelectron 1998, 13, 259–269, doi:10.1016/S0956-5663(97)00139-5. 9642764
[18]  Allan, DW. Statistics of atomic frequency standards. Proc. IEEE 1966, 54, 211–230.
[19]  Zhou, CX; Huang, LQ; Li, SFY. Microgravimetric DNA sensor based on quartz crystal microbalance: Comparison of oligonucleotide immobilization methods and the application in genetic diagnosis. Biosens. Bioelectron 2001, 16, 85–95, doi:10.1016/S0956-5663(00)00136-6. 11261857

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133