Nanostructured plasmonic metamaterials, including optical nanoantenna arrays, are important for advanced optical sensing and imaging applications including surface-enhanced fluorescence, chemiluminescence, and Raman scattering. Although designs typically use ideally smooth geometries, realistic nanoantennas have nonzero roughness, which typically results in a modified enhancement factor that should be involved in their design. Herein we aim to treat roughness by introducing a realistic roughened geometry into the finite element (FE) model. Even if the roughness does not result in significant loss, it does result in a spectral shift and inhomogeneous broadening of the resonance, which could be critical when fitting the FE simulations of plasmonic nanoantennas to experiments. Moreover, the proposed approach could be applied to any model, whether mechanical, acoustic, electromagnetic, thermal, etc, in order to simulate a given roughness-generated physical phenomenon.
Farahani, JN; Eisler, H-J; Pohl, DW; Pavius, M; Fluckiger, P; Gasser, P; Hecht, B. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy. Nanotechnology 2007, 18, 125506, doi:10.1088/0957-4484/18/12/125506.
[4]
Farahani, JN; Pohl, DW; Eisler, HJ; Hecht, B. Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett 2005, 95, 017402, doi:10.1103/PhysRevLett.95.017402. 16090656
[5]
Hecht, B; Mühlschlegel, P; Farahani, JN; Eisler, H-J; Hans-Jürgen; Pohl, DW; Martin, OJF; Biagioni, P. Prospects of resonant optical antennas for nano-analysis. CHIMIA Int. J. Chem. 2006, 60, 765–769, doi:10.2533/chimia.2006.765.
[6]
Sundaramurthy, A; Schuck, PJ; Conley, NR; Fromm, DP; Kino, GS; Moerner, WE. Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas. Nano Lett 2006, 6, 355–360, doi:10.1021/nl052322c. 16522022
[7]
Moskovits, M. Surface enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc. 2005, 36, 485–496, doi:10.1002/jrs.1362.
[8]
Kottmann, J; Martin, O. Plasmon resonant coupling in metallic nanowires. Opt. Express 2001, 8, 655–663, doi:10.1364/OE.8.000655. 19421255
[9]
Crozier, KB; Sundaramurthy, A; Kino, GS; Quate, CF. Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 2003, 94, 4632–4642, doi:10.1063/1.1602956.
[10]
Fromm, DP; Sundaramurthy, A; Schuck, PJ; Kino, G; Moerner, WE. Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible. Nano Lett. 2004, 4, 957–961, doi:10.1021/nl049951r.
Bozhevolnyi, SI; S?ndergaard, T. General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators. Opt. Express 2007, 15, 10869–10877, doi:10.1364/OE.15.010869. 19547444
Aizpurua, J; Bryant, GW; Richter, LJ; García de Abajo, FJ; Kelley, BK; Mallouk, T. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B. 2005, 71, 235420, doi:10.1103/PhysRevB.71.235420.
[17]
Link, S; El-Sayed, MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426, doi:10.1021/jp9917648.
[18]
Kim, J-Y; Drachev, V; Yuan, H-K; Bakker, R; Shalaev, V. Imaging contrast under aperture tip–nanoantenna array interaction. Appl. Phys. B: Lasers Opt. 2008, 93, 189–198, doi:10.1007/s00340-008-3155-7.
Rodríguez-Fernández, J; Funston, AM; Pérez-Juste, J; álvarez-Puebla, RA; Liz-Marzán, LM; Mulvaney, P. The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Phys. Chem. Chem. Phys. 2009, 11, 5909–5914, doi:10.1039/b905200n. 19588012
[25]
Trügler, A; Tinguely, J-C; Krenn, JR; Hohenau, A; Hohenester, U. Influence of surface roughness on the optical properties of plasmonic nanoparticles. Phys. Rev. B 2011, 83, 081412(R).