The use of microsensors for in-field monitoring of environmental parameters is gaining interest due to their advantages over conventional sensors. Among them microsensors based on semiconductor technology offer additional advantages such as small size, robustness, low output impedance and rapid response. Besides, the technology used allows integration of circuitry and multiple sensors in the same substrate and accordingly they can be implemented in compact probes for particular applications e.g., in situ monitoring and/or on-line measurements. In the field of microsensors for environmental applications, Ion Selective Field Effect Transistors (ISFETs) have a special interest. They are particularly helpful for measuring pH and other ions in small volumes and they can be integrated in compact flow cells for continuous measurements. In this paper the technologies used to fabricate ISFETs and a review of the role of ISFETs in the environmental field are presented.
References
[1]
Bergveld, P. Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Trans. Biomed. Eng?1970, BM17, 70.
[2]
Bergveld, P. Thirty Years of ISFETOLOGY—What Happened in the Past 30 Years and What May Happen in the Next 30 Years. Sens. Actuat. B-Chem?2003, 88, 1–20, doi:10.1016/S0925-4005(02)00301-5.
[3]
Janata, J. 20 Years of Ion-Selective Field-Effect Transistors. Analyst?1994, 119, 2275–2278, doi:10.1039/an9941902275.
Bergveld, P.; Sibbald, A.; Svehla, G. ISFET Fabrication. In Analytical and Biomedical Applications of Ion-Selective Field-Effect Transistors; Elsevier Science: Amsterdam, The Netherlands, 1988; pp. 75–99.
Van der Wal, P.D.; Van den Berg, A.; De Rooij, N.F. Universal Approach for the Fabrication of Ca2+, K+ and NO3? Sensitive Membrane ISFETs. Sens. Actuat. B-Chem?1994, 18(1–3), 200–207.
Munoz, J.; Jimenez, C.; Bratov, A.; Bartroli, J.; Alegret, S.; Dominguez, C. Photosensitive polyurethanes applied to the development of CHEMFET and ENFET devices for biomedical sensing. Biosens. Bioelectron?1997, 12(7), 577–585, doi:10.1016/S0956-5663(96)00081-4. 9366017
[12]
Kolytcheva, N.V.; Muller, H.; Marstalerz, J. Influence of the organic matrix on the properties of membrane coated ion sensor field-effect transistors. Sens. Actuat. B-Chem?1999, 58(1–3), 456–463.
[13]
Jimenez, C.; Bratov, A.; Abramova, N.; Baldi, A. ISFET Based Sensors: Fundamentals and Applications. In Encyclopedia of Sensors; Grimes, C.A., Dickey, E.C., Pishko, M.V., Eds.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2006; Volume 5, pp. 151–196.
Chandler, G.K.; Dodgson, J.R.; Eddowes, M.J. An ISFET-Based Flow-Injection Analysis System for Determination of Urea - Experiment and Theory. Sens. Actuat. B-Chem?1990, 1(1–6), 433–437.
[16]
Jimenez, C.; Bartroli, J.; De Rooij, N.F.; Koudelka-Hep, M. Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction. Anal. Chim. Acta?1997, 351(1–3), 169–176.
Chi, L.L.; Yin, L.T.; Chou, J.C.; Chung, W.Y.; Sun, T.P.; Hsiung, K.P.; Hsiung, S.K. Study on Separative Structure of EnFET to Detect Acetylcholine. Sens. Actuat. B-Chem?2000, 71(1–2), 68–72.
[20]
Puig-Lleixa, C.; Jimenez, C.; Alonso, J.; Bartroli, J. Polyurethane-Acrylate Photocurable Polymeric Membrane for Ion-Sensitive Field-Effect Transistor Based Urea Biosensors. Anal. Chim. Acta?1999, 389(1–3), 179–188.
[21]
Alegret, S.; Bartroli, J.; Jimenez-Jorquera, C.; Del Valle, M.; Dominguez, C.; Esteve, J.; Bausells, J. Flow-through pH-ISFET + Reference-ISE as Integrated Detector in Automated FIA Determinations. Sens. Actuat. B-Chem?1992, 7(1–3), 555–560.
[22]
Izquierdo, A.; De Castro, M.D.L. Ion-Sensitive Field-Effect Transistors and Ion-Selective Electrodes as Sensors in Dynamic-Systems. Electroanalysis?1995, 7(6), 505–519, doi:10.1002/elan.1140070602.
Bergveld, P. Bedside Clinical Chemistry: From Catheter Tip Sensor Chips Towards Micro Total Analysis Systems. Biomed. Microdevices?2000, 2(3), 185–195, doi:10.1023/A:1009976328558.
[25]
Van der Schoot, B.H.; Jeanneret, S.; Van den Berg, A.; De Rooij, N.F. Modular Setup for a Miniaturized Chemical-Analysis System. Sens. Actuat. B-Chem?1993, 15(1–3), 211–213.
[26]
Bratov, A.; Munoz, J.; Dominguez, C.; Bartroli, J. Photocurable Polymers Applied as Encapsulating Materials for ISFET Production. Sens. Actuat. B-Chem?1995, 25(1–3), 823–825.
[27]
Chovelon, J.M.; Fombon, J.J.; Clechet, P.; Jaffrezic-Renault, N.; Martelet, C.; Nyamsi, A.; Cros, Y. Sensitization of Dielectric Surfaces by Chemical Grafting—Application to pH ISFETs and REFETs. Sens. Actuat. B-Chem?1992, 8(3), 221–225, doi:10.1016/0925-4005(92)85021-N.
[28]
Chudy, M.; Wroblewski, W.; Brzozka, Z. Towards REFET. Sens. Actuat. B-Chem?1999, 57(1–3), 47–50.
[29]
Matsuo, T.; Esashi, M. Characteristics of Parylene Gate ISFET. J. Electrochem. Soc?1978, 125(3), C121–C121.
[30]
Huang, I.Y.; Huang, R.S. Fabrication and Characterization of a New Planar Solid-State Reference Electrode for ISFET Sensors. Thin Solid Films?2002, 406(1–2), 255–261.
[31]
Zaborowski, M.; Jaroszewicz, B.; Tomaszewski, D.; Prokaryn, P.; Malinowska, E.; Grygolowicz-Pawlak, E.; Grabiec, P. Fabrication of MOS-compatible ion-sensitive devices for water pollution monitoring (warmer). 14th International Conference on Mixed Design of Integrated Circuits and Systems, Ciechocinek, Poland, June 21–23, 2007; pp. 477–481.
[32]
Ewald, D.; van den Berg, A.; Grisel, A. Technology for Backside Contacted pH-Sensitive ISFETs Embedded in a p-Well Structure. Sens. Actuat. B-Chem?1990, 1(1–6), 335–340.
[33]
Merlos, A.; Esteve, J.; Acero, M.C.; Cane, C.; Bausells, J. Application of Nickel Electroless Plating to the Fabrication of Low-Cost Backside Contact ISFETs. Sens. Actuat. B-Chem?1995, 27(1–3), 336–340.
[34]
Sakai, T.; Amemiya, I.; Uno, S.; Katsura, M. A Backside Contact ISFET with a Silicon-Insulator-Silicon Structure. Sens. Actuat. B-Chem?1990, 1(1–6), 341–344.
[35]
van den Vlekkert, H.H.; Kloeck, B.; Prongue, D.; Berthoud, J.; Hu, B.; De Rooij, N.F.; Gilli, E.; Decrousaz, P. A pH-ISFET and an Integrated pH-Pressure Sensor with Back-Side Contacts. Sens. Actuat?1988, 14(2), 165–176, doi:10.1016/0250-6874(88)80063-5.
[36]
Merlos, A.; Cabruja, E.; Esteve, J. New Technology for Easy and Fully IC-Compatible Fabrication of Backside-Contacted ISFETs. Sens. Actuat. B-Chem?1995, 24(1–3), 228–231.
[37]
Poghossian, A.S. Method of Fabrication of ISFETs and CHEMFETs on an Si-SiO2-Si Structure. Sens. Actuat. B-Chem?1993, 14(1–3), 653–654.
[38]
Yagi, H.; Sakai, T. Rear-Gate ISFET with A Membrane Locking Structure Using an Ultrahigh Concentration Selective Boron-Diffusion Technique. Sens. Actuat. B-Chem?1993, 13(1–3), 212–216.
[39]
Cane, C.; Gracia, I.; Merlos, A. Microtechnologies for pH ISFET Chemical Sensors. Microelectron. J?1997, 28(4), 389–405, doi:10.1016/S0026-2692(96)00068-7.
Akiyama, T.; Ujihira, Y.; Okabe, Y.; Sugano, T.; Niki, E. Ion-Sensitive Fiel-Effect Transistors with Inorganic Gate Oxide for pH Sensing. IEEE T. Electron Dev?1982, 29(12), 1936–1941, doi:10.1109/T-ED.1982.21054.
[42]
Kimura, J.; Kuriyama, T.; Kawana, Y. An Integrated SOS/FET Multi-Biosensor. Sens. Actuat?1986, 9(4), 373–387, doi:10.1016/0250-6874(86)80069-5.
[43]
Chin, Y.L.; Chou, J.C.; Sun, T.P.; Chung, W.Y.; Hsiung, S.K. A Novel pH Sensitive ISFET with on Chip Temperature Sensing Using CMOS Standard Process. Sens. Actuat. B-Chem?2001, 76(1–3), 582–593.
[44]
Lauwers, E.; Suls, J.; Gumbrecht, W.; Maes, D.; Gielen, G.; Sansen, W. A CMOS Multiparameter Biochemical Microsensor with Temperature Control and Signal Interfacing. IEEE J. Solid-St. Circ?2001, 36(12), 2030–2038, doi:10.1109/4.972154.
[45]
Wong, H.S.; White, M.H. A CMOS-Integrated ISFET-Operational Amplifier Chemical Sensor Employing Differential Sensing. IEEE T. Electron. Dev?1989, 36(3), 479–487, doi:10.1109/16.19957.
[46]
Yeow, T.C.W.; Haskard, M.R.; Mulcahy, D.E.; Seo, H.I.; Kwon, D.H. A Very Large Integrated pH-ISFET Sensor Array Chip Compatible with Standard CMOS Processes. Sens. Actuat. B-Chem?1997, 44(1–3), 434–440.
[47]
Martinoia, S.; Rosso, N.; Grattarola, M.; Lorenzelli, L.; Margesin, B.; Zen, M. Development of ISFET Array-Based Microsystems for Bioelectrochemical Measurements of Cell Populations. Biosens. Bioelectron?2001, 16(9–12), 1043–1050. 11679287
Tsukada, K.; Miyahara, Y.; Miyagi, H. Platinum-Platinum Oxide Gate pH-ISFET. Jpn. J. Appl. Phys?1989, 28(12), 2450–2453.
[50]
Bausells, J.; Carrabina, J.; Errachid, A.; Merlos, A. Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sens. Actuat. B-Chem?1999, 57(1–3), 56–62.
[51]
Bousse, L.; Shott, J.; Meindl, J.D. A Process for the Combined Fabrication of Ion Sensors and CMOS Circuits. IEEE Electron Device Lett?1988, 9(1), 44–46, doi:10.1109/55.20408.
[52]
Hammond, P.A.; Cumming, D.R.S.; Ali, D. A Single-Chip pH Sensor Fabricated by a Conventional CMOS Process. IEEE Sensors Conference, Orlando, FL, USA, 2002; pp. 350–355.
[53]
Jakobson, C.G.; Dinnar, U.; Fiensod, M.; Nemirovsky, Y. Ion-Sensistive Field-Effect Transistor in Standard CMOS Fabricated Post Processing. IEEE Sens. J?2002, 2(4), 279–287, doi:10.1109/JSEN.2002.802237.
[54]
Milgrew, M.J.; Cumming, D.R.S.; Hammond, P.A. The fabrication of scalable multi-sensor arrays using standard CMOS technology. IEEE Custom Integrated Circuits Conference, San Jose, California, USA, 2003; pp. 513–516.
[55]
Palan, B.; Roubik, K.; Husak, M.; Courtois, B. CMOS ISFET-based structures for biomedical applications. EEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology Conference, Lyon, France, 2000; pp. 502–506.
[56]
Van Steekiste, F.; Lauwers, E.; Suls, J.; Maes, D.; Baert, K. A biochemical CMOS integrated multi-parameter microsensor. Transducers '99 Conference, Sendai, Japan, 1999; pp. 1188–1190.
[57]
Baumann, W.H.; Lehmann, M.; Schwinde, A.; Ehret, R.; Brischwein, M.; Wolf, B. Microelectronic Sensor System for Microphysiological Application on Living Cells. Sens. Actuat. B-Chem?1999, 55(1), 77–89, doi:10.1016/S0925-4005(99)00116-1.
[58]
Campanella, L.; Colapicchioni, C.; Crescentini, G.; Sammartino, M.P.; Su, Y.; Tomassetti, M. Sensitive Membrane ISFETs for Nitrate Analysis in Waters. Sens. Actuat. B-Chem?1995, 27(1–3), 329–335.
[59]
Wakida, S.I.; Yamane, M.; Takeda, S.; Siroma, Z.; Tsujimura, Y.; Liu, J.H. Studies on pH and Nitrate Checkers Made of Semiconductor Devices for Acid Rain Monitoring. Water Air Soil Poll?2001, 130(1–4), 625–630.
[60]
Poghossian, A.; Baade, A.; Emons, H.; Schoning, M.J. Application of ISFETs for pH Measurement in Rain Droplets. Sens. Actuat. B-Chem?2001, 76(1–3), 634–638.
[61]
Humenyuk, I.; Torbiero, B.; Assie-Souleille, S.; Colin, R.; Dollat, X.; Franc, B.; Martinez, A.; Temple-Boyer, P. Development of pNH4-ISFETs Microsensors for Water Analysis. Microelectron. J?2006, 37(6), 475–479, doi:10.1016/j.mejo.2005.09.024.
[62]
Temple-Boyer, P.; Launay, J.; Humenyuk, I.; Do Conto, T.; Martinez, A.; Beriet, C.; Grisel, A. Study of Front-Side Connected Chemical Field Effect Transistor for Water Analysis. Microelectron. Reliab?2004, 44(3), 443–447, doi:10.1016/j.microrel.2003.10.001.
Bratov, A.; Dominguez, C. Chemical Multi-Sensor Arrays for Liquids Monolithic Integration Using Microelectronic Technology. In Defense Against Bioterror: Detection Technologies, Implementation Strategies and Commercial Opportunities; Springer: Dordrecht, The Netherlands, 2005; Volume 1, pp. 273–289.
[65]
Alegret, S.; Bartroli, J.; Jimenez, C.; Delvalle, M.; Dominguez, C.; Cabruja, E.; Merlos, A. Flow-through Ph-ISFET as Detector in Automated Determinations. Electroanalusis?1991, 3(4–5), 349–354.
[66]
Alegret, S.; Alonso, J.; Bartroli, J.; del Valle, M.; Jaffrezic-Renault, N.; Duvault-Herrera, Y. Flow-through pH-ISFET as Detector in the Determination of Ammonia. Anal. Chim. Acta?1990, 231(1), 53–58.
[67]
Jimenez, C.; Marques, I.; Bartroli, J. Continuous-Flow System for on Line Water Monitoring Using Back Side Contact ISFET-Based Sensors. Anal. Chem?1996, 68(21), 3801–3807, doi:10.1021/ac9603946. 21619255
[68]
Cambiaso, A.; Chiarugi, S.; Grattarola, M.; Lorenzelli, L.; Lui, A.; Margesin, B.; Martinoia, S.; Zanini, V.; Zen, M. An H+-FET-Based System for On-Line Detection of Microorganisms in Waters. Sens. Actuat. B-Chem?1996, 34(1–3), 245–251.
[69]
Chung, D.W.Y.; Tsai, Y.L.; Liu, T.T.; Leu, C.L.; Yang, C.H.; Pijanowska, D.G.; Torbicz, W.; Grabiec, P.B.; Jaroszewicz, B. Analog Processor Design for Potentiometric Sensor Array and Its Applications in Smart Living Space—Art. No. 65760W. Conference on Independent Component Analyses, Wavelets, Unsupervised Nano-Biomimetic Sensors, and Neural Networks V, Orlando, FL, USA, April 10–13, 2007; pp. W5760–W5760.
[70]
Chung, W.Y.; Chang, K.C.; Hong, D.Y.; Cheng, C.; Cruza, F.; Liu, T.S.; Yang, C.H.; Chiang, J.L.; Pijanowska, D.G.; Dawgul, M.; Torbicz, W.; Grabiec, P.B.; Jarosewicz, B. An Electronic Tongue System Design Using Ion Sensitive Field Effect Transistors and Their Interfacing Circuit Techniques. 17th Biennial University/Government/Industry Micro-Nano Symposium, Louisville, KY, USA, July 13–16, 2008; pp. 44–48.
[71]
Chen, D.Y.; Chan, P.K. An Intelligent ISFET Sensory System with Temperature and Drift Compensation for Long-Term Monitoring. IEEE Sens. J?2008, 8(11–12), 1948–1959.
[72]
Campanella, L.; Colapicchioni, C.; Aiello, L.; Tomassetti, M. New ISFET Devices for Environmental Analysis. Analusis?1997, 25(5), 164–167.
[73]
Sanchez, J.; Beltran, A.; Alonso, J.; Jimenez, C.; del Valle, M. Development of a New Ion-Selective Field-Effect Transistor Sensor for Anionic Surfactants: Application to Potentiometric Titrations. Anal. Chim. Acta?1999, 382(1–2), 157–164.
[74]
Janata, J.; Huber, R.J.; Cohen, R.; Kolesar, E.S. Chemically Sensitive Field-Effect Transistor to Detect Organophosphorous Compounds and Pesticides. Aviat. Space Environ. Med?1981, 52(11), 666–671. 7305794
[75]
Campanella, L.; Colapicchioni, C.; Favero, G.; Sammartino, M.P.; Tomassetti, M. Organophosphorus Pesticide (Paraoxon) Analysis Using Solid State Sensors. Sens. Actuat. B-Chem?1996, 33(1–3), 25–33.
[76]
Colapicchioni, C.; Barbaro, A.; Porcelli, F. Fabrication and Characterization of ENFET Devices for Biomedical Applications and Environmental Monitoring. Sens. Actuat. B-Chem?1992, 6, 202–207.
[77]
Hendji, A.M.N.; Jaffrezic-Renault, N.; Martelet, C.; Clechet, P.; Shulga, A.A.; Strikha, V.I.; Netchiporuk, L.I.; Soldatkin, A.P.; Wlodarski, W.B. Sensitive Detection of Pesticides Using a Differential ISFET-Based System with Immobilized Cholinesterases. Anal. Chim. Acta?1993, 281(1), 3–11, doi:10.1016/0003-2670(93)85333-F.
[78]
Ristori, C.; DelCarlo, C.; Martini, M.; Barbaro, A.; Ancarani, A. Potentiometric detection of pesticides in water samples. Anal. Chim. Acta?1996, 325(3), 151–160, doi:10.1016/0003-2670(96)00023-2.
[79]
Flores, F.; Artigas, J.; Marty, J.L.; Valdes, F. Development of an EnFET for the Detection of Organophosphorous and Carbamate Insecticides. Anal. Bioanal. Chem?2003, 376(4), 476–480, doi:10.1007/s00216-003-1925-y. 12748754
[80]
Jaffrezic-Renault, N.; Senillou, A.; Martelet, C.; Wan, K.; Chovelon, J. M. ISFET Microsensors for the Detection of Pollutants in Liquid Media. Sens. Actuat. B-Chem?1999, 59(2–3), 154–164.
[81]
Orozco, J.; Baldi, A.; Baena, R.; Cadarso, A.; Bratov, A.; Jimenez, C. Portable system based on microsensors for environmental monitoring applications. Meas. Sci. Technol?2007, 18(3), 935–940, doi:10.1088/0957-0233/18/3/048.
[82]
Dieffenbach, A.; Matzner, E. In situ soil solution chemistry in the rhizosphere of mature Norway spruce (Picea abies [L.] Karst.) trees. Plant Soil?2000, 222(1–2), 149–161.
[83]
Artigas, J.; Beltran, A.; Jimenez, C.; Baldi, A.; Mas, R.; Dominguez, C.; Alonso, J. Application of ion sensitive field effect transistor based sensors to soil analysis. Comput. Electron. Ag?2001, 31(3), 281–293, doi:10.1016/S0168-1699(00)00187-3.
[84]
Artigas, J.; Beltran, A.; Jimenez, C.; Bartroli, J.; Alonso, J. Development of a Photopolymerisable Membrane for Calcium Ion Sensors—Application to Soil Drainage Waters. Anal. Chim. Acta?2001, 426(1), 3–10, doi:10.1016/S0003-2670(00)01146-6.
[85]
Beltran, A.; Artigas, J.; Jimenez, C.; Mas, R.; Bartroli, J.; Alonso, J. Development of Durable Nitrate-Selective Membranes for All-Solid State ISE and ISFET Sensors Based on Photocurable Compositions. Electroanalysis?2002, 14(3), 213–220, doi:10.1002/1521-4109(200202)14:3<213::AID-ELAN213>3.0.CO;2-U.
[86]
Rossel, R.A.V.; Walter, C. Rapid, Quantitative and Spatial Field Measurements of Soil pH Using an Ion Sensitive Field Effect Transistor. Geoderma?2004, 119(1–2), 9–20.
[87]
Gieling, T.; van Straten, G.; Janssen, H.J.J.; Wouters, H. ISE and CHEMFET Sensors in Greenhouse Cultivation. Sens. Actuat. B-Chem?2005, 105(1), 74–80.
[88]
van den Vlekkert, H.H.; Verkerk, U.H.; van der Wal, P.D.; van Wingerden, A.; Reinhoudt, D.N.; Haak, J.R.; Honig, G.W.N.; Holterman, H.A.J. Multiion Sensing Device for Horticultural Application Based upon Chemical Modification and Special Packaging of ISFETs. Sens. Actuat. B-Chem?1992, 6(1–3), 34–37.
[89]
Birrell, S.J.; Hummel, J.W. Real-time multi ISFET/FIA soil analysis system with automatic sample extraction. Comput. Electron. Agric?2001, 32(1), 45–67, doi:10.1016/S0168-1699(01)00159-4.
[90]
Price, R.R.; Hummel, J.W.; Birrell, S.J.; Ahmad, I.S. Rapid nitrate analysis of soil cores using ISFETs. T. ASAE?2003, 46(3), 601–610.
[91]
European, C. Engineered Barrier Systems and the Safety of Deep Geological RepositoriesState-of-the-art Report, Nuclear Energy Agency Organisation for Economic co-operation and development. 2003.
[92]
Fernandez, A.M.; Cuevas, J.; Rivas, P. Pore Water Chemistry of the Febex Bentonite. Mater. Res. Soc. Symp. Proc?2001, 663, 573–588.
[93]
Fernandez, A.M.; Turrero, M.J.; Rivas, P. Analysis of squeezed pore waters as a function of the applied pressure in Opalinus Clay material (Switzerland). Water-Rock Interact?2001, 10, 1323–1326.
[94]
Fernandez, A.M.; Baeyens, B.; Bradbury, M.; Rivas, P. Analysis of the Porewater Chemical Composition of a Spanish Compacted Bentonite Used in an Engineered Barrier. Phys. Chem. Earth?2004, 29(1), 105–118, doi:10.1016/j.pce.2003.12.001.
[95]
Wang, X.K.; Chen, Y.X.; Wu, Y.C. Sorption and Desorption of Radiostrontium on Powdered Bentonite: Effect of pH and Fulvic Acid. J. Radioanal. Nuc. Chem?2004, 261(3), 497–500, doi:10.1023/B:JRNC.0000037088.34650.0e.
[96]
European, C. The Role of Underground Laboratories in Nuclear Waste Disposal ProgrammesNuclear Energy Agency Organisation for Economic co-operation and development. 2001.
[97]
Motellier, S.; Noire, M. H.; Pitsch, H.; Dureault, B. pH Determination of Clay Interstitial Water Using A Fiberoptic Sensor. Sens. Actuat. B-Chem?1995, 29(1–3), 345–352.
[98]
Orozco, J.; Baldi, A.; Martin, P. L.; Bratov, A.; Jimenez, C. Monitoring of bentonite pore water with a probe based on solid-state microsensors. Anal. Chim. Acta?2006, 579(1), 95–101, doi:10.1016/j.aca.2006.07.030. 17723733
[99]
Jimenez, C.; Moreno, L.; de Haro, C.; Munoz, F.X.; Florido, A.; Rivas, P.; Fernandez, M.; Martin, P.L.; Bratov, A.; Dominguez, C. Development of a Multiparametric System Based on Solid-State Microsensors for Monitoring a Nuclear Waste Repository. Sens. Actuat. B-Chem?2003, 91(1–3), 103–108.