Electronic noses (ENs), are used for many applications, but we must emphasize the importance of their application to foodstuffs like coffee. This paper presents a research study about the analysis of Colombian coffee samples for the detection and classification of defects (i.e., using “Cup Tests”), which was conducted at the Almacafé quality control laboratory in Cúcuta, Colombia. The results obtained show that the application of an electronic nose called “A-NOSE”, may be used in the coffee industry for the cupping tests. The results show that e-nose technology can be a useful tool for quality control to evaluate the excellence of the Colombian coffee produced by National Federation of Coffee Growers.
References
[1]
Gardner, W.J.; Shurmer, H.V.; Tan, T.T. Application of an electronic nose to the discrimination of coffees. Sens. Actuat?1992, 6, 71–75, doi:10.1016/0925-4005(92)80033-T.
[2]
Mellon, F. Spectroscopic Techniques for Food Analysis; Wilson, R., Ed.; Wiley-VCH: Weinheim, Germany, 1994; p. 246.
[3]
Eyles, M.J.; Adams, R.F. Detection of microbial metabolites by gas chromatography in the examination of spoiled canned foods and related products. Int. J. Food Microbiol?1986, 3, 321–330.
[4]
Huang, L.F.; Wu, M.J.; Zhong, K.J.; Sun, Z.J.; Liang, Y.Z.; Dai, Y.H.; Huang, K.L. Fingerprint developing of coffee flavor by gas chromatography-mass spectrometry and combined chemometrics methods. Anal. Chim?2007, 588, 216–223, doi:10.1016/j.aca.2007.02.013.
[5]
Pardo, M.; Sberveglieri, G. Coffee analysis with an electronic nose. IEEE Trans. Instrum. Meas?2002, 51, 1334–1339, doi:10.1109/TIM.2002.808038.
[6]
Falasconi, M.; Pardo, M.; Sberveglieri, G.; Nardini, F.; Della, T.; Bresciani, A. The novel EOS835 electronic nose sniffs out the Italian Espresso Coffee quality. Proceedings of IEEE Sensors 2003, Toronto, Canada, October 2003; pp. 26–29.
[7]
Ulmer, H.; Mitrovics, J.; Noetzel, G.; Wiemar, U.; Gopel, W. Odours and flavours identified with hybrid modular sensor systems. Sens. Actuat?1992, 43, 24–33.
[8]
Delarue, J.; Gretsch, C.; Liardon, R.; Visani, P. Detection of Aroma above a coffee powder, limits and perspectives of electronic sensors. Proceedings of the 3rd International Symposium on Olfaction and Electronic Noses, Miami, FL, USA, November 1996; pp. 183–190.
[9]
Wang, X.; Ye, M.; Duanmu, C.J. Classification of data from electronic nose using relevance vector machines. Sens. Actuat?2009, 140, 143–148, doi:10.1016/j.snb.2009.04.030.
[10]
Singh, S.; Hines, E.L.; Gardner, W.J. Fuzzy neural computing of coffee and tainted-water data from an electronic nose. Sens. Actuat?1996, 30, 185–190, doi:10.1016/0925-4005(96)80047-5.
[11]
Pardo, M.; Niederjaufner, G.; Benussi, G.; Comini, E.; Faglia, G.; Sberveglieri, G.; Holmberg, M.; Lundstrom, I. Data preprocessing enhances the classification of different brands of Espresso coffee with an electronic nose. Sens. Actuat?2000, 69, 397–403, doi:10.1016/S0925-4005(00)00499-8.
[12]
Falasconi, M.; Pardo, M.; Sberveglieri, G.; Riccò, I.; Bresciani, A. The novel EOS835 electronic nose and data analysis for evaluating coffee ripening. Sens. Actuat?2005, 110, 73–80, doi:10.1016/j.snb.2005.01.019.
[13]
Tan, T.T.; Loubet, F.; Labreche, S.; Amine, H. Quality control of coffee using the FOX4000 electronic nose. ISIE’97, Guimaraes, Portugal, July 1997; pp. 140–145.
[14]
Almacafé (Colombia), Availabe online: http://www.cafedecolombia.com/quienessomos/almacafe/almacafe.html (accessed in December 2008).
[15]
Durán, A.C.M.; Rodríguez, J.C. Sistema de Olfato Electrónico para la Detección de compuestos Volátiles. Revista Colombiana De Tecnologías De Avanzada?2008, 12, 20–26.
[16]
Gardner, W.J.; Bartlett, P. Electronic Noses: Principles and Aplications; Oxford University Press: New York, NY, USA, 1999; pp. 74–75.
[17]
Gardner, J.W. Detection of vapours and odours from a multisensor array using pattern recognition. Part 1. Principal components and and cluster analyses. Sens. Actuat?1991, 4, 108–116.
[18]
Corte, M.; Masulli, F.; Riani, M.; Pardo, M.; Faglia, G.; Sberveglieri, G. Estimation of gas concentrations in a mixture using a neural dynamical model. Proceedings of the 7th International Meeting on Chemical Sensors, Beijing, China, July 1998; pp. 770–772.